PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wydajność produkcji biomasy glonowej w reaktorze otwartym

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Productivity of algal biomass in open reactor
Języki publikacji
PL
Abstrakty
PL
Cele prowadzenia hodowli glonów zależą bezpośrednio od określonych potrzeb i zapotrzebowania ludzi. W Stanach Zjednoczonych, systemy stawów glonowych zostały opracowane początkowo jako wsparcie dla technologii oczyszczania wody. Biomasa odzyskana została przetworzona do metanu, który był głównym źródłem energii [2, 8]. Z upływem czasu biomasa glonowa stała się bardzo ważnym elementem żywnościowym w szeroko pojętej akwakulturze [7]. Ostatnio glony przyciągnęły wiele uwagi z powodu znacznego potencjału w produkcji kosmetyków oraz z uwagi na walory odżywcze. Organizmy te znalazły zastosowanie także w innych obszarach takich jak w systemy do produkcji substancji pozakomórkowych, jak również dla biosorpcji metali ciężkich [1]. Niektóre badania wykazały również znaczenie glonów w wiązaniu dwutlenku węgla.
EN
Algae may be a source to a few types of renewable biofuels, starting from methane produced in processes of anaerobic decomposition of biomass, through biodiesel produced from algae oil, and finally to photobiological production of hydrogen. Algae may be utilized indirectly for the production of biodiesel, bioethanol and biobutanol. The resultant biomass may further on be processed in a variety of technological pathways. Oil produced in various processes may be processed into fuel, whereas biogas may be exploited for energetic purposes. In addition, the biomass may be directly combusted to provide heat or electricity. Algae biomass contains approximately ca. 50% of carbon in dry matter. The demand for carbon dioxide accounts approximately for 183 tones per 100 tones of biomass produced. The temperature of culture should oscillate between 20 and 30°C. The only feasible methods of largescale production of algae biomass include production in racetrack type ponds and in tubular photo-bioreactors (PBRs). A racetrack type pond is a construction that is based on a number of loops made in a closed recirculation canal. The typical depth of a such a pond reaches 0.2÷0.3 m, however there are also some ponds having 0.5 m of depth. Processes of mixing and excitation of the flow in such a device proceed with the use of a paddle wheel. The flux is directed round the bends by two deflectors fixed in the flux of canal. Canals of the pond can be made of concrete or from pressed soil, and are ruled with white plastic. During sun exposure, the culture is fed continuously. Nutrients are delivered in front of the paddle wheel where the culture flux begins. The biomass produced is collected from a device ahead of the paddle wheel, at the end of a loop. The paddle wheel is operating perpetually to prevent biomass sedimentation. Ponds of this type have been commonly applied for culturing algae biomass in the 50-ties of the 20th century. An extensive experience has been built based on the operation and engineering of race-tracks. The greatest facility of biomass production based on the racetrack covers the area of 440.000 m2 and is aimed at obtaining cyanobacterial biomass for food purposes. The aim of this study was to determine the possibility of algal culture in an open reactor. Studies on the use of open reactor to collect the algal biomass showed that there is a possibility of its effective propagation and storage. During the experiment, the content of the biomass in the reactor has increased six times. The rate of biomass growth was variable. An important factor limiting growth was the concentration of algae in the solution. Two concentration limits were found at which the growth restriction was followed, first at about 1000 mg d.m.o./l, and then at 1450 mg d.m.o./l. The rate of biomass growth is depending on rate of nutrients removal. In the assumed conditions of the experiment concentrations of phosphorus proved to be limiting.
Rocznik
Tom
Strony
1743--1752
Opis fizyczny
Bibliogr. 9 poz., tab., rys.
Twórcy
autor
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
Bibliografia
  • 1. Borowitzka M.A.: Algae. In: Smith B. & Barlow C. (eds.), Inland saline aquaculture workshop. ACIAR: Canberra., 35÷36. 1999.
  • 2. Burlew J. S.: Algae culture from laboratory to pilot plant. Carnegie Inst. Wash. Publ. No. 600. 1953.
  • 3. Chae S.R., Hwang E.J., Shin H.S.: Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photobioreactor, Bioresource Technology, 97 (2), 322÷329. 2006.
  • 4. Lee C.G., Palsson B.Ø.: Continuous medium perfusion leads to longterm cell viability and oxygen production in high-density photobioreactors. Biotechnol. Lett. 17, 1149÷1154. 1995.
  • 5. Lee C.G., Palsson B.Ø.: Photoacclimation of Chlorella vulgaris to red light from light-emitting diodes leads to autospore release following each cellular division. Biotechnol. Prog. 12, 249÷256. 1996.
  • 6. Lloyd D.: Dark respiration, in: W.D.P. Stewart (Ed.), Algal Physiology and Biochemistry, University of California Press, California, 505÷530. 1974.
  • 7. Muller-Feuga A.: The role of microalgae in aquaculture: situation and trends, Journal of Applied Phycology, 12(3-5), 527÷534. 2000.
  • 8. Oswald W. J., Golueke C.: Biological Transformation of Solar Energy. Advances in Applied Microbiology, 2, 223÷262. 1960.
  • 9. Venkatraman L.V., Becker E.V.: Biotechnology and utilization of Algae, CFTRI, Mysore, India 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPWR-0002-0112
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.