PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocena procesów biologicznego usuwania azotanów (V) i fosforanów w komorze SBR z zewnętrznym źródłem węgla

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Evaluation of process of biological nitrate and phosphate removal in SBR type reactor with external carbon source
Języki publikacji
PL
Abstrakty
PL
Celem pracy jest określenie wpływu lotnych kwasów tłuszczowych na szybkość uwalniania i wiązania fosforanów w reaktorze SBR oczyszczającym ścieki charakteryzujące się porównywalnymi stężeniami fosforanów i azotanów (V). Celem pracy jest także ustalenie, czy na przebieg i sprawność procesów defosfatacji i denitryfikacji ma wpływ obecność w biomasie osadu czynnego mikroorganizmów zaadaptowanych wcześniej do określonych źródeł węgla. Zakres pracy obejmował określenie: szybkości uwalniania i wiązania fosforanów w obecności kwasów octowego, propionowego, masłowego, walerianowego, izowalerianowego i kapronowego, wpływu rodzaju kwasu na efektywność usuwania fosforanów szybkości procesu denitryfikacji w fazie mieszania i napowietrzania oraz sprawności procesu denitryfikacji w zależności o rodzaju kwasu z grupy LKT.
EN
Determinations were made for the effect of volatile fatty acids (VFA) on the rate of release and absorption of phosphates and on the rate of nitrates removal in the stirring and aeration phases in an SBR type reactor. The effectiveness of phosphates and nitrates removal, influenced by the fatty acid applied, was determined as well. The experiment was conducted in SBR type reactors in one working cycle (stirring - 3 h, aeration - 4 h and sedimentation - 1 h) in the presence of acetic, propionic, butyric, isobutyric, valeric, isovaleric and caproic acids. The initial concentrations of phosphates and nitrates were: 13.4 mg PPO4?dm-3 and 15.2 mg NNO3?dm-3, respectively. The study demonstrated that phosphates were released with the highest rate in the reactors containing acetic acid (3.35 mg PPO4?dm-3?h-1), whereas with the lowest rate - in these containing butyric acid (1.25 mg PPO4?dm-3?h-1). Also the process of phosphates absorption proceeded with the highest rate in the reactor with acetic acid (4.19 mg PPO4?dm-3?h-1), and with the lowest rate - in the presence of isobutyric acid (2.13 mg PPO4?dm-3?h-1). In the case of acetic acid, the highest rates of both processes corresponded with the most effective dephosphatation process (50.0%). Such an explicit dependency was not, however, noted in the case of other fatty acids. In the stirring phase, the denitrification process proceeded with the highest rate (3.95 mg NNO3?dm-3?h-1) in the reactor containing caproic acid, and with the lowest rate - in the presence of isobutyric acid (3.42 mg NNO3?dm-3? h-1). During aeration, the rate of nitrates concentration decrease was the highest in the presence of butyric acid (0.91 mg NNO3?dm-3?h-1) and the lowest - in the presence of caproic acid (0.52 mg NNO3?dm-3?h-1). The highest rates of denitrification recorded in both phases in the reactor with caproic acid were not tantamount to the highest effectiveness of nitrates removal. It was the acetic acid that turned out to be the most effective source of carbon in the denitrification process (92.6%) The highest efficiency of both examined processes was observed in the presence of acetic acid. Negligibly lower efficiencies were noted in the reactor with butyric acid. In view of the fact that propionic acid was only slightly less effective both in the denitrification as well as dephosphatation process, it may be speculated that the presence of microorganisms, adapted earlier to specified carbon sources, in the biomass of activated sludge is likely to affect the course and effectiveness of both processes in reactors with an external source of carbon.
Rocznik
Tom
Strony
453--468
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Uniwersytet Warmińsko-Mazurski, Olsztyn
Bibliografia
  • 1. Abugharach Z. H., Randall C. W.: The effect of organic compounds on biological phosphorus removal. Wat. Sci. Technol. 23, 585÷594. 1991.
  • 2. Arora M.L., Barth E.F., Umphres M.B.: Technology evaluation of sequencing batch reactors. J. Water Pollut. Control Fed. 57, 867÷875. 1985.
  • 3. Bock E., Schmidt I., Stűven R., Zart D.: Nitrogen loss caused by denitrifying nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiol. 163(1), 16÷20. 1995.
  • 4. Carlsson H., Aspegren H., Hilmer A.: Interactions between wastewater quality and phosphorus release in the anaerobic reactor of the EBPR process. Wat. Res., 30: 1517÷1527. 1996.
  • 5. Chen Y., Randall A., McCue T.: The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid, Wat. Res. 38: 27÷36. 2004.
  • 6. Elefsiniotis P., Li D.: The effect of temperature and carbon source on denitrification using volatile fatty acids, Biochemical Engineering Journal 28: 148÷155. 2006.
  • 7. Gerber A. Mostert E.S., Winter C.T., De Villiers R.H.: The effect of acetate and other short-chain carbon compounds on the kinetics of biological nutrient removal. Water SA 12(1), 7÷12. 1986.
  • 8. Hood C.R., Randall A.A.: A biochemical hypothesis explaining the response of enhanced biological phosphorus removal biomass to organic substrates, Wat. Res., 35(11): 2758÷2766. 2001.
  • 9. Janczukowicz W.: Usuwanie fosforu ze ścieków mleczarskich w bioreaktorze sekwencyjnym w obecności wybranych lotnych kwasów tłuszczowych (LKT), Rozprawy i monografie, 107, Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego. Olsztyn 2005.
  • 10. Janczukowicz W., Dębowski M., Zieliński M., Pesta J.: Volatile fatty acids (VFA) concentration in wastewater from different sections of dairy industry, Electronic Journal of Polish Agricultural Universities, Environmental Development, Vol. 10, Issue 1, 31, 1÷8. 2007.
  • 11. Kargi F., Uygur A., Baskaya H.S.: Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR. Journal of Environmental Management. 76, 71÷75. 2005.
  • 12. Kerrn-Jespersen J.P., Henze M.: Biological phosphorus uptake under anoxic and aerobic conditions. Wat. Res., 27: 617÷624. 1993.
  • 13. Klimiuk E.: Kinetyka przemian związków azotu i fosforu w osadzie czynnym w warunkach beztlenowo-tlenowych. Rozprawy i Monografie, Wydawnictwo ART. Olsztyn 1998.
  • 14. Lötter L.H.: The role of bacterial phosphate metabolism in enhanced phosphorus removal from the activated sludge process. Wat. Sci. Technol. 17, 127÷138. 1985.
  • 15. Patel J., Nakhla G.: Interaction of denitryfication on P removal in anoxic P removal systems. Desalination 201, 82÷99. 2006.
  • 16. Pijuan M., Saunders A.M., Guisasola A., Baeza J.A., Casas C., Blackall L.L.: Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source, Biotechnol. Bioeng., 85 (1), 56÷67. 2004.
  • 17. Randall A.A., Benefield L.D., Hill W.E., Nicol J.P., Boman G.K., Jing S.R.: The effect volatile fatty acids on enhanced biological phosphorus removal and population structure in anaerobic/aerobic sequencing batch reactor. Wat. Sci. Technol. 35, 153÷160. 1997.
  • 18. Rustrian E., Delgenes J. P., Moletta R.: Phosphate release and uptake by pure cultures of Acinetobacter sp.: Effect of the Volatile Fatty Acids Concentration, Current Microbiology, 34: 43÷48. 1997.
  • 19. Simpkin T.J., Boyle W.: The lack of repression by oxygen of the denitrifying enzymes in activated sludge. Wat. Res., 22: 201÷206. 1988.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPWR-0002-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.