Identyfikatory
Warianty tytułu
Analysis of instability in phase transitions of energy media. Part I assessment of knowledge
Języki publikacji
Abstrakty
W opracowaniu ograniczono zakres analizy do dwóch charakterystycznych przemian fazowych, to znaczy wrzenia i skraplania. Brak pełnej odwracalności między tymi przemianami nie pozwala na deterministyczny sposób ich analizy, bowiem ich realizacji towarzyszą, niekiedy jakościowo różne zjawiska. Bez względu na to, czy przemiana fazowa zachodzi w objętości, czy też w przepływie, występowanie stanów niestabilnych tłumaczy się powstawaniem warunków nierównowagi termodynamicznej podczas ich realizacji. Wspólna przyczyna wywołania niestabilności skutkuje bardzo wieloma ich odmianami. Według obecnego stanu wiedzy klasyfikacja typów niestabilności jest bardzo utrudniona, z uwagi na znaczne rozproszenie źródeł bibliograficznych oraz stosowaną terminologię. Podkreślić należy, że zdecydowana większość publikacji w literaturze dotyczy prezentacji wyników badań eksperymentalnych, natomiast od kilku lat obserwuje się systematyczny wzrost liczby publikacji zawierających analizy teoretyczne niestabilności przemian fazowych. Istnieje jednak wiele obszarów, które wymagają dalszych badań.
A principle of operation of some machines and electrical equipment consists in making use of the phase transition of energy media in a thermodynamic cycle. Under the notion of an energy medium we understand both the energy carrier and also the thermodynamic factor being subject to the transitions and taking part in the conversion of energy, being directly or indirectly involved in it. Water, refrigerants, water solutions of salt, etc are rated among energy media. The fact that the phase transitions of energy media occurring in evaporators and condensers of machines and equipment are very 'sensitive' to all the instabilities, both external and internal in character, appearing in the course of operational use could be considered as well-substantiated. In general, the instabilities in a two-phase flow could be divided into two categories. The flow is considered as static stable if the source of instabilities is inseparably tied up with parameters of the steady-state system. Due to the fact, that the instability follows from a change in value of the steady-state system parameters one can expect that it is possible to predict the onset of the instability merely knowing this steady state. The static instability mostly leads to the other working point of this system in a steady state or the periodic oscillations in its behaviour. As an example of static instabilities the instability of the first boiling crisis or a so-called Leddinegg instability could be mentioned. The instability of the first boiling crisis takes place in case of changing the heat-exchange mechanism during the process of boiling in volume. When the heat flux on the heated surface reaches the critical value the bubble boiling is replaced by the film boiling. If the thermal or hydrodynamic reactions, giving the distinct inertial effects, are the main reason for the system instabilities, then the flow is unstable, dependent on so-called dynamic instabilities. Such the instabilities in flow through the two-phase medium of a fluid-gas type could be transferred by means of two mechanisms, i.e. the acoustic waves (pressure instabilities) and the waves of mass flux density change (as an effect of the filling ratio fluctuations). These phenomena are wavy in character, but the velocities of wave propagation are very different. The acoustic waves are marked by high frequencies, whereas the wave oscillations of mass flux density change usually have much lower frequency. The acoustic instabilities result from the pressure-wave propagation in a two-phase flow. The acoustic oscillations may occur during the subcooled boiling and at the developed boiling in flow providing the critical heat flux was reached and the system was converted into the film boiling. According to Ber-gles, the acoustic oscillations may affect the course of flow. An amplitude of the acoustic pressure oscillations may reach the high value, compared the average value of the fluctuation frequency transition in two-phase media. The frequency of oscillations of this type recorded during the experimental investigations was within the scope 10 -10 000 Hz. The wave of the mass flux density change velocity is relatively low, due to the time required for the fluid particle to flow through a coil pipe. Waves of this type are observed mostly in the course of boiling in flow, when a coil pipe is supplied with the fluid heated below the temperature of saturation (subcooled boiling). These oscillations follow directly from the relation between the process of boiling and the properties of a two-phase flow. An instantaneous drop in a flow rate at the intake results in an increase of the specific enthalpy in this region. The higher enthalpy at a part of a subcooled flow leads to a local rise in temperature of the medium. It reduces the value of fluid underheating to the saturation temperature and shifts the initial point of boiling inversely to a flow of the medium. From the onset of boiling in flow, a local filling ratio and a coefficient of vapour dryness in a coil pipe were increasing. A local increase in the vapour dryness and the filling ratio led to the instability in a thickness of a thin film of fluid on a coil pipe wall. It can produce a change in the flow structure from a bubble an annular flow, which consequently causes the flow to be re-accelerated. There is an increase in a local gradient of pressure leading to the further drop in a total pressure during the two-phase flow in a coil pipe. Small fluctuations in a flow rate could be intensified until the specific amplitude of the wave of the mass flux density change was obtained. It has been confirmed by experimental investigations, which reveal the characteristic oscillation features of the wave of the mass flux density change. They pointed out that the oscillations of the wave of the mass flux density change are strongly dependent of changes in a heat flux density, a degree of cross-section reduction at the intake and the outlet of the medium in a coil pipe, a single- and two-phase frictional pressure drop in a coil pipe, super-cooling, a flow rate of the medium and changes in the system pressure.
Wydawca
Czasopismo
Rocznik
Tom
Strony
61--93
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
- Politechnika Koszlińska
Bibliografia
- 1. Badur J., Banaszkiewicz M.: A model of two-phase flow with relaxa-tional-gradient microstructure. Proc. 3th International Conference on Multiphase Flow, ICMF'98, Lyon, France, June 8-12. 1998.
- 2. Badur J., Bilicki Z., Kwidzyński R.: Operacyjna lepkość objętościowa w procesie transportu pędu ekspandującej wody i uderzeniowej kondensacji pary wodnej. Zeszyty Naukowe IMP PAN, Gdańsk 479/1428/07.
- 3. Bergles A.E.: Review of instabilities in two-phase systems. Hemisphere Publishing Corporation, Bristol, 1977.
- 4. Bilicki Z.: Opis systemu dwufazowego modelem ciągłym. Prace Instytutu Maszyn Przepływowych. Gdańsk, nr 167/1066, 1983.
- 5. Bilicki Z.: Koncepcja parametrów wewnętrznych na tle obecnych tendencji w termodynamice procesów nieodwracalnych i jej zastosowanie w przepływach dwufazowych. Prace Instytutu Maszyn Przepływowych PAN, Gdańsk, 421/1379/94, 1994.
- 6. Bilicki Z.: Nierównowaga termodynamiczna w ośrodku dwufazowym. XVI Zjazd Termodynamików, Koszalin-Kołobrzeg, tom III, 45-73, 1996.
- 7. Bilicki Z., Downar-Zapolski P.: Criteria of choking in nonequilibrium two-phase flow. Archiwum Termodynamiki, vol. 13, no 1-4, 113-123, 1992.
- 8. Bilicki Z., Kardaś.: Numeryczne modelowanie fal zagęszczonych w przepływach dwufazowych. Prace Instytutu Maszyn Przepływowych PAN, Gdańsk, 386/1326/93, 1993.
- 9. Bilicki Z.: Modelowanie przepływów wielofazowych. Materiały XIII Krajowej Konferencji Mechaniki Płynów, Częstochowa, 21-26.09.1998, tom 3, 165-188, 1998.
- 10. Bilicki Z.: Zjawiska falowe w przepływach dwufazowych. Materiały XIII Krajowej Konferencji Mechaniki Płynów, Częstochowa, 21-26.09.1998, tom 3, 41-60, 1998.
- 11. Bohdal T.: Investigation of boiling of refrigerating medium under conditions of impulse disturbances. Int. J. Experimental Heat Transfer, vol. 17, no 2, 103-117, 2004.
- 12. Bohdal T., Kuczyński W.: Investigation of boiling of refrigeration medium under periodic disturbance conditions. Int. J. Experimental Heat Transfer, vol. 18, no 3, 135-151, 2005.
- 13. Bohdal T.: Przyczyny niestabilności przemian fazowych czynników energetycznych. Monografia, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin 2007.
- 14. Cao L., Kukaç S., Liu H.T., Sarnia P.K.: 77ze effects of thermal non-equilibrium and inlet temperature on two-phase flow pressure drop type instabilities in an upflow boiling system. Int. J. Therm. Sei. 39, 88-905, 2000.
- 15. Carey V.P.: Liquid-vapor phase-change phenomena. Hemisphere Publishing Corporation, Washington 1992.
- 16. Comakli Ö., Karsli S., Yilmaz M.: Experimental investigation of two phase flow instabilities in a horizontal in-tube boiling system. Energy Conversion and Management 43, 249-268, 2002.
- 17. Gabaraev B., Kvalev S.A., Molochnikov Yu. S., Soloviev S.L., Usatikov S.V.: Boiling curve in temperature wave region. Int. J. Heat Mass Transfer, vol. 46, pp. 139-148, 2003.
- 18. Kakaç S., Veziroglu T.N., Özboya N., Lee S.S.: Transient boiling flow instabilities in a multi-channel upflow system. Wärme-Stoffübertragung, vol. 10, 175-178, 1977.
- 19. Kakaç S., Veziroglu T.N., Padki M.M.,Fu L. Q.,Chen X. J.: Investigation of thermal instabilities in a forced convective upward boiling system. Experimental Thermal Fluid Sei., Vol. 3, 181-201, 1990.
- 20. Karsli S., Yilmaz M., Comakli O.: The effect of internal surface modification on flow instabilities in forced convection boiling in a horizontal tube. Int. J. of Heat and Fluid Flow, vol. 23, 776-791, 2002.
- 21. Mayinger F., Kastner W.: Berechnung Instabilitäten in Zwiephasenströ-mungen. Int. J. Chem. Ing. Tech., vol. 40, 1185-1192, 1968.
- 22. Mikielewicz J.: Wybrane zagadnienia generacji pary w obiegu dwuczyn-nikowym. Biuletyn Instytutu Maszyn Przepływowych PAN, Gdańsk, nr 34/720/1972, 1972.
- 23. Nguyen D.L., Winter E.R.F., Greiner M.: Sonic velocity in two-phase system. Int. J. Multiphase Flow, vol. 7, no 3, 321-336, 1981.
- 24. Seporaitis M., Pabarcius R., Almenas K.: Study of controlled condensation implosion events. Proc of ICONE 10. 10th Intern. Conf. on Nuclear Engineering, Arlington, Virginia (Washington DC), USA, 7 pages, 2002.
- 25. Stenning A.H.: Instabilities in the flow of a boiling liquid. J. Basic Eng. Trans., ASME, Series D, vol 86, 213-220, 1964.
- 26. Wang Q., Chen J., Kakaç S., Ding Y.: Boiling onset oscillation: a new type of dynamic instability in a forced-convection upflow boiling system. Int. J. Heat and Fluid Flow, vol. 17,418-423, 1996.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0014-0072