Identyfikatory
Warianty tytułu
Transport of colloidal particles with arsenic ions adsorbed on the colloidal surfaces through mineral porous bed
Języki publikacji
Abstrakty
Obecność odpadów przemysłowych w środowisku naturalnym staje się coraz bardziej zauważalnym problemem w ochronie środowiska. Za główne źródło ich powstawania, uważa się przemysł wydobywczy i przetwórstwa kopalin. W wyniku prowadzenia procesów wzbogacania, bądź procesów hutniczych, powstają odpady deponowane na hałdach, które w znaczący sposób przyczyniają się do zanieczyszczeń wód gruntowych. Dzieje się tak w wyniku transportu trudno rozpuszczalnych zanieczyszczeń przez naturalny polimineralny ośrodek porowaty. Zjawisko to zostało zaliczone do głównych procesów mających istotny wpływ na zanieczyszczanie wód gruntowych.
The storage of insecure industrial waste, descended from mining and metallurgical industry, has an influence on the pollution of a ground and groundwater. It is a result of migration of toxic substances into the bed of soli. The weathering processes and hydrodynamic changes in soil causes the colloidal particles formation, which are effective contaminations carriers through mineral porous media. In this paper transport of colloidal particles: synthetic hematite and natural kaolin has been investigated. The porous medias were waste from both Szklary and Złoty Stok heaps. The aim of this work is to inspect the influence of arsenate ions on the behaviour of colloidal particles in porous bed. The investigations were conducted in two ionic strengths: 5ź10-3 M KCl and 5ź10-4 M KCl, at pH 9.2-11.6. Results showed that transport of colloidal hematite was facilitated, when arsenic ions were adsorbed onto the colloid particles. Additionally, the increase of mobility of hematite was caused by a decrease of ionic strength. In the case of kaolin transport, the results showed an increase of kaolin particles migration without arsenic ions. These behaviour of colloidal kaolin particles into mineral bed isexplained by different surface property of kaolin particles. Results of examinations on colloidal particles of hematite and kaolin transport through column with mineral bed show, that examined mobility is conditioned with physico-chemical proprieties of colloidal particles and materials of porous bed. Studied colloids, can influence pollution of underground waters in the areas of storing of studied industrial wastes. Results of conducted measurements show, that the process of examined colloidal particles transport is influenced by presence of adsorbed arsenic ions. It is the most perceptible phenomenon in the case of the colloidal hematite, particularly for porous medium built from materials taken from the southern side of heap in Szklary and heap in Złot Stok. Additionally, influence of ion strength on quantity of transported colloidal particles through the layer of porous mineral medium was observed. When ion strength was decreasing, the thickness of the double electric layer increases on colloidal particles. It has impact on decrease of attracting interactions among particles of colloid, and also between colloidal particle and grain of mineral bed. The opposite case was noted during investigations on transportation of colloidal particles of kaolin. Adsorption of arsenic ions by particles of kaolin causes decrease of their mobility. This causes stopping of migration of arsenic ions to underground waters. The similar result is obtained when ion strength is enlarged.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1119--1130
Opis fizyczny
bibliogr. 17 poz.
Twórcy
Bibliografia
- 1. Arienzo M., Adamo P., Chiarenzelli J., Bianco M. R., Martino A.: Retention of arsenic on hydrous ferric oxides generated by electrochemical peroxidation. Chemosphere 48, 1009-1018, 2002.
- 2. Baumann T., Werth C.J.: Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging. Colloids Surfaces A, 265, 2-10, 2005.
- 3. Benning L. G.: Asrenic sulphides: nucleation and growth from aqueous solution. School of Earth Sciences, University of Leeds.
- 4. Drewniak Ł., Skłodowska A.: Rola bakterii w biogeochemicznym cyklu arsenu. Postępy Mikrobiologii, 46(3), 275-285, 2007.
- 5. Gimenez J., Martinez M., Pablo J., Rovira M., Duro L.: Arsenic sorption onto natural hematite, magnetite and goethite. J. Hazardous Materials, 141, 575-580, 2007.
- 6. Johnson P.R., Sun N., Elimelech M.: Colloid Transport in Geochemically Heterogeneous Porous Media: Modeling and Measurements. Environ. Sci. Technol., 30, 3284-3293, 1996.
- 7. Kretzschmar R., Sticher H.: Colloid Transport in Natural Porous Media: Influence of Surface Chemistry and Flow Velocity. Phys. Chem. Earth, 23(2), 133-139, 1998.
- 8. Kuhnen F., Barmettler K., Bhattacharjee S., Elimelech M., Kretzschmar R.: Transport of Iron Oxide Colloids in Packed Quartz Sand Media: Monolayer and Multilayer Deposition. J. Colloid Interface Science, 231, 32-41, 2000.
- 9. Lenoble V., Bouras O., Deluchat V., Serpaud B., Bollinger J. C.: Arsenic Adsorption onto Pillared Clays and Iron Oxides. J. Colloid Interface Science 255, 52-58, 2002.
- 10. Lorenzen L., Deventer J. S. J., Landi W. M.: Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Minerals Engineering, 8 (4/5), 557-569, 1995.
- 11. Mohanty K.K., Hirasaki G.J.: Editional overview. Transport in porous materials. Current Opinion in Colloid & Interface Science, 6, 189-190, 2001.
- 12. Rosik–Dulewska C.: Podstawy Gospodarki Odpadami. Wydawnictwo Naukowe PWN, Warszawa, 2002.
- 13. Roy S.B., Dzombak D.A.: Colloid release and transport processes in natural and model porous media. Colloids Surfaces A, 107, 245-262, 1996.
- 14. Ryan J.N., Elimelech M.: Colloid mobilization and transport in groundwater. Colloids Surfaces A, 107, 1-56, 1996.
- 15. Sen T.K, Kilar K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Advances in Colloid and Interface Science, 119, 71-96, 2006.
- 16. Sen T.K., Mahajan S.P., Khilar K.C.: Colloid – Associated Contaminant Transport in Porous Media: 1. Experimental Studies. AIChE Journal, 48(10), 2366-2374, 2002.
- 17. Zhang F.-S., Itoh H.: Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere, 60, 319-325, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0008-0098