Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-article-BPW9-0008-0095

Czasopismo

Rocznik Ochrona Środowiska

Tytuł artykułu

Wpływ mineralnej karbonatyzacji na wymywalność zanieczyszczeń

Autorzy Uliasz-Bocheńczyk, A.  Piotrowski, Z. 
Treść / Zawartość http://ros.edu.pl/
Warianty tytułu
EN Impact of mineral carbonation on pollutants leachability
Języki publikacji PL
Abstrakty
EN Mineral sequestration is one of the methods of reducing the anthropogenic emission of CO2. Sequestration of CO2 via mineral carbonation is an ecologically safe method, since the ongoing processes result in products that are thermodynamically stable and neutral to the environment, in the form of carbonates, while the process of mineral carbonation through CO2 bonding in natural mineral resources and concrete is a phenomenon occurring in nature. At the same time, it may be used to reduce the leachability of impurities from waste. The employment of mineral carbonation in order to reduce the leachability of impurities from fly ash seems particularly interesting, as, at present, the ash is scarcely used in economy. Thus, CO2 reduction may be limited as well as leachability of impurities from waste, partly solving the problem of its deposition. The literature on leachability of fly ash after its prior mineral carbonation has been reviewed in the paper. The conditions of performing the process of carbonation by different authors have also been presented. The authors have shown the findings on three selected fly ash types from Polish power industry prior to and after their carbonation. The process of carbonation was carried out at a research station assembled specially for this purpose. The impact of mineral carbonation use on leachability of impurities from ash-aqueous suspensions has been presented. In the paper, the findings on leachability of the following chemical impurities have been revealed: Zn, Cu, Pb, Ni, As, Hg, Cd, Cr, Cl-, SO4 -2 from ash-aqueous suspensions, with compositions based on fly ash from hard coal combustion in Jaworzno and Lublin heat and power plants, from lignite combustion in Bełchatów power plant, as well as pH and chemical oxygen demand (COD) in leachates from ash-aqueous suspensions. The insertion of CO2 caused the reduction of leachability of Zn, Cu, Cr in case of all the three researched ash types. The obtained results have been compared with the requirements of PN-G-11011 standard 'Materials for solidified stowage and groutingof cavings' in the Regulation of Minister of Environment, 29th November 2002, on requirements to meet while entry to waters or soil of sewage, as well as on substances specifically harmful for the water environment and the Regulation of Minister of Environment, 27th November 2002, on conditions that surface waters employed as the sourceof drinking water are subject to. The findings on leachability only in certain cases do not meet the requirements of PN-G-11011 standard as well as the previously mentioned Regulations. The method of mineral carbonation is particularly interesting, since it may be used not only for CO2 sequestration, but also for limiting the leachability of ash from waste incineration, which may soon become, due to its amounts caused by increasing waste mass, the waste difficult to manager and which, above all, will be landfilled. This article is a preliminary publication signalizing the idea of leaching stabilization by mineral carbonation.
Słowa kluczowe
PL karbonatyzacja   wymywalność zanieczyszczeń   CO2   odpady komunalne  
EN carbonation   pollutants leachability   CO2  
Wydawca Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska
Czasopismo Rocznik Ochrona Środowiska
Rocznik 2009
Tom Tom 11
Strony 1083--1092
Opis fizyczny bibliogr. 25 poz.
Twórcy
autor Uliasz-Bocheńczyk, A.
autor Piotrowski, Z.
  • Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków
Bibliografia
1. Arickx S., Van Gerven T., Vandecasteele C.: Accelerated carbonation for treatment of MSWI bottom ash. Journal of Hazardous Materials B 137, 235-243, 2006.
2. Arickx S., De Borger V., Van Gerven T., Vandecasteele C.: Effect of accelerated carbonation of MSWI bottom ash on the leaching mechanism of cooper. Proceedings of 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering, Roma, 353-362, 2008.
3. Baciocchi R., Costa G., Polettini A., Pomi R.: An insight into the effect of accelerated carbonation on metal release from incineration ash. Proceedings of 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering, Roma, 363-375, 2008.
4. Cornelis G., Van Gerven T., Vandecasteele C.: Antimony leaching from uncarbonated and carbonated MSWI bottom ash. Journal of Hazardous Materials B 137, 1284-1292, 2008.
5. Costa G., Baciocchi R., Polettini A., Pomi R., Hills C.D., Carey P.J.: Current status and perspectives of accelerated carbonation process on municipal waste combustion residues. Environmental Monit Assess, 135, 55-75, 2007.
6. Ecke H.: Sequestration of metals in carbonated municipal waste incineration (MSWI) fly ash. Waste Management 23, 631-640, 2003.
7. Fernández-Bertos M., Li X., Simons S.J.R., Hills C.D., Carey P.J.: Investigation of accelerated carbonation for the stabilization of MSW incinerator ashes and the sequestration of CO2. Green Chemistry 6(8), 428-436, 2004.
8. He P.J., Cao Q.K., Shao L.M., Lee D.J.: Aging of air pollution control residues from municipal solid waste incinerator: Role of water content on metal carbonation. Science of Total Environment 359, 26-37, 2006.
9. Huijgen W.J.J., Comans R.N.J.: Mineral CO2 sequestration by carbonation of industrial residues. ECN. ECN-C-05-074, 2005, www.ecn.nl
10. IPCC Special Report on Carbon Dioxide Capture and Storage, part 7. Mineral Carbonation and Industrial uses of Carbon Dioxide. Coordinating Lead Author: Marco Mazzotti, 2005
11. Lackner K.S., Wendt C.H., Butt D.P., Joyce L.E., Sharp D.H.: Carbon dioxide disposal in carbonate minerals. Energy, vol. 20, no 11, 1153-1170, 1995.
12. Li X., Fernández-Bertos M., Hills C.D., Carey P.J., Simons S.J.R.: Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Management 27, 1200-1206, 2007.
13. Meima J.A., van der Weijden R.D., Eighmy T.T., Comans R.N.J.: Carbonation process in municipal solid waste incineration bottom ash and their effect on leaching of copper and molybdenum. Applied Geochemistry 17, 1503-1513, 2002.
14. Polettini A., Pomi R.: Leaching behaviour of incineration bottom ash by accelerated ageing. Journal of Hazardous Materials B 113, 209-215, 2004.
15. Rendek E., Ducom G., Germain P.: Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. Journal of Hazardous Materials B128, 73-79, 2006.
16. Rozporządzenie Ministra Środowiska z dnia 27 listopada 2002 r. w sprawie wymagań, jakim powinny odpowiadać wody powierzchniowe wykorzystywane do zaopatrzenia ludności w wodę przeznaczoną do spożycia (Dz. U. 02.204.1728 z dnia 9 grudnia 2002 r.) b.
17. Rozporządzenie Ministra Środowiska z dnia 29 listopada 2002 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz. U. 02.212.1799 z dnia 16 grudnia 2002 r.) a.
18. Saito E., Shimaoka T., Etoh J., Idemato S., Kano T.: Changes in the leaching behaviour of trace hazardous elements in coal ash due to the carbonation of ettringite. Proceedings of 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering, Roma, 375-387, 2008.
19. Takahashi F., Shimaoka T., Saito K., Etoh J.: Effect of the sorption on lead immobilization of carbonated MSW incineration bottom ash. Proceedings of 2ndInternational Conference on Accelerated Carbonation for Environmental and Materials Engineering, Roma, 343-352, 2008.
20. Todorovic J., Ecke H.: Demobilization of critical contaminants in four typical waste-to-energy ashes by carbonation. Waste Management 26, 430-441, 2006.
21. Uliasz-Bocheńczyk A., Mokrzycki E., Piotrowski Z., Pomykała R.: Składowanie CO2 z zawiesinami popiołowo-wodnymi pod ziemią). Wyd. IGSMiE PAN, Kraków, 2007.
22. Uliasz-Bocheńczyk A.: Zastosowanie popiołów lotnych ze spalania węgla ka-miennego w kotłach wodnych do sekwestracji CO2 na drodze mineralnej karbonatyzacji. Rocznik Ochrony Środowiska 2008, t. 10, 567-574, 2008.
23. Uliasz-Bocheńczyk A., Mokrzycki E.: CO2 sequestration with the use of fly ash from hard coal and lignite combustion. Slovak Geological Magazine 2009 (w druku).
24. Van Gerven T., Van Keer E., Arickx S., Jaspers M., Wauters G., Vandecas-teele C.: Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Management 25, 291-300, 2005.
25. Zhang H., He P.J., Shao Li.M, Lee D.J.: Temporary stabilization of air pollution control residues using carbonation. Waste Management 28, 509-517, 2008.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-article-BPW9-0008-0095
Identyfikatory