PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ekologiczno-energetyczne aspekty badań eksperymentalnych procesu skraplania czynników chłodniczych w minikanałach rurowych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Ecology and energy related aspect of experimental tests of the condensation process of refrigerants in pipe mini-channels
Języki publikacji
PL
Abstrakty
EN
In the era of miniaturization of power equipment, application of compact systems is a very advantageous solution. Compact heat exchangers which are used in refrigerating systems do not only transfer a large density of the heat flux but also perform environment-friendly functions; a refrigerant occupies a small volume, and when there is no leak tightness, there is little threat to the natural environment. Application of heat exchangers with flux of single-phase mediums (water or air) is not sufficient any more. That is the possibility of utilization of phase changes of refrigerants (boiling and condensation) realized during flux in channels with small diameter. Conception of constructing so-called compact heat exchangers (evaporators and condensers) which are a part of cooling installation was created that way. However the designers of compact heat exchangers have to face today difficult problem of choice sufficient computational procedures in the range of the heat exchange and flow resistances in channels with hydraulic diameter smaller than 3 mm [13]. Wellknown in literature procedures, tested for conventional channels (d > 3 mm) theoretically and experimentally, do not have to and in most cases are not suitable for micro- and mini-channels. This causes need to find and point the best computational formulae to be used in compact exchangers. It should be underlined, that number publications, presenting description of heat exchange and flow resistances during boiling in the mini- and micro-channels is much larger, than for the case of condensation in such channels. Up to date knowledge about conventional channel proves that processes of boiling and condensation in flow cannot be treated as "symmetrical" phenomena. Also mechanism of energy transport and momentum in processes of boiling and condensation in flow both in conventional channels and in mini-channels. The basic part of the paper is constituted by the presentation of the author's own experimental research on heat exchange in the condensation process of R134 a refrigerant in pipe mini-channels with an internal diameter of 1.6÷3.3 mm. On the basis of a comparative analysis, the usefulness of Akers and Shah's correlations was stated for the determination of the heat transfer coefficient in this process. The range of divergence of experiment results and calculations according to Ackers correlation was significantly smaller and that is why this correlation may be recommended for designers. Experiments were conducted in the following range of parameters: saturation temperature tk = 35÷40°C, density of mass stream (wp) = 200÷600 kg/(m2źs) and density of heat stream q = 5÷50 kW/m2
Rocznik
Tom
Strony
143--162
Opis fizyczny
bibliogr. 16 poz.
Twórcy
autor
autor
  • Politechnika Koszalińska
Bibliografia
  • 1. Akers W., Deans O.K., Crosser O.K.: Condensation heat transfer within horizontal tubes. Chemical Engineering Progress Symp., vol. 55, 171-176, 1959.
  • 2. Bandhauer T.M., Agarwal A., Garimella S.: Measurement and modeling of condensation heat transfer coefficients in circular microchannels. Journal of Heat Transfer Transactions of ASME, vol. 128, 1050-1059, 2006.
  • 3. Bohdal T., Charun H., Piatkowski P., Więckiewicz D.: Skraplanie czynników chłodniczych w minikanałach rurowych. Międzynarodowa Konferencja Chłodnicza, Poznań, XL Dni chłodnictwa, 59-75, 2008.
  • 4. Bohdal T., Charun H.: Przegląd procedur obliczeniowych skraplania czynnika chłodniczego R134a w minikanałach. Chłodnictwo, Część 1, nr 8, 2-5 oraz Część 2, nr 9, 2-7, 2008.
  • 5. Cavallini A., Censi G., Del Col D., Doretti L., Longo G.A., Rosetto L.: Condensation of halogenated refrigerants inside smooth tubes. HVAC &R Research, vol.no 4, 429-451, 2002.
  • 6. Charun H.: Podstawy Gospodarki Energetycznej – Część 1. Wyd. Uczelniane Politechniki Koszalińskiej, Koszalin 2004.
  • 7. Del Col D.: Condensation in minichannels and microchannels. Proc. VII Scuola estiva UIT, Tecniche Sperimentali in Termofluidodinamica, Portignano, 1-34, 2007.
  • 8. Dhanani H., Schmidt S., Metzger C.: Condensation in mini- and microchannels. Heat and Mass Transfer Laboratory, 2007.
  • 9. Dobson M.K., Chato J.C.: Condensation in smooth horizontal tubes. I. Heat Transfer, ASME, vol. 120, 193-213, 1998.
  • 10. Garimella S.A., Agarwal A., Killion J.D.: Condensation pressure drop in circular microchannels. Heat Transfer Engineering, vol. 26, no 3, 1-8, 2005
  • 11. Gnutek Z., Nemś A.: Tendencje rozwoju maszyn i urządzeń energetycznych w erze miniaturyzacji. Materiały XXX Zjazdu Termodynamików, Wrocław, tom I, 318-324, 2008.
  • 12. http://w.w.w. nauka.gov.pl
  • 13. Kandlikar S.G.: Microchannels and minichannels- history, terminology, classification and current research needs. First International Conference on Microchannels and Minichannels, New York, 2003.
  • 14. Langman E.: Ekoprojektowanie – prezentacja idei i regulacji prawnych. Chłodnictwo & Klimatyzacja, nr 1-2, 74-80, 2007.
  • 15. Shah M.M.: A general correlation for heat transfer during film condensation inside pipes. Int. J. of Heat and Mass Transfer, vol. 22, 547-556, 1979.
  • 16. Tang L.: Empirical study of new refrigerant flow condensation inside horizontal smooth and micro-fin tubes. University of Maryland at College Park, Ph.D. Thesis, pp.251, 1997
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0008-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.