PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Whole lake primary production assessment by bio-optical modelling

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A hypertrophic lake in Leipzig has been analyzed with respect to the basic limnological parameters, nutrients and phytoplankton community dynamic in the course of the year 2002. A bio-optical model was developed to assess the daily primary production based on the spectrally resolved surface irradiance, the light climate in the euphotic zone of the water column, the quantification of the light absorption by the phytoplankton and its photosynthetic efficiency measured with the help of in-vivo Chla-fluorescence. Summing up the modeled primary production per day for the whole vegetation period it turned out that the productivity was no limited by the nutrients but by the light only. This is the first report that an adopted bio-optical modeling can be used to assess the annual primary production of a whole freshwater lake bio-optical modeling, fluorescence, lake remediation measure, phytoplankton, primary production
Czasopismo
Rocznik
Tom
Strony
45--49
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Institute of Botany, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
autor
  • Institute of Botany, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
autor
  • Institute of Botany, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
autor
  • Institute of Botany, Department of Plant Physiology, University of Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany
Bibliografia
  • Becker A., Meister A., Wilhelm C. 2002. Flow cytometric discrimination of various phycobilin containing phytoplankton groups in a hypertrophic reservoir. Cytometry 4, 45–57.
  • Bürgi H.R. 1992. Das Phytoplankton und seine trophische Struktur in Seen unterschiedlicher Trophie. EAWAG-Mitteilungen 34, 14–19.
  • Gilbert M., Richter M., Wilhelm C. 2000a. Bio-optical modelling of oxygen evolution using in-vivo fluorescence: comparison of measured and calculated P-I curves in four representative phytoplankton species. Journal of Plant Physiology 157, 307–314.
  • Gilbert M., Domin A., Becker A., Wilhelm C. 2000b. Estimation of primary productivity by chlorophyll a in vivo fluorescence in freshwater phytoplankton. Photosynthetica 38, 111–126.
  • Gotham I.J., Rhee F.Y. 1981. Comparative kinetic studies of nitrate-limited growth and nitrate uptake in phytoplankton in continuous culture. Journal of Phycology 17, 309–314.
  • Eilers P.H.C., Peeters J.C.H. 1988. A model for the relationship betweenlight intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling 42, 199–215.
  • Jakob T., Schreiber U., Wilhelm C. Modelling the daily primary production of the major algal groups based on multiwavelength- exciation PAM fluorescence technology. (submitted)
  • Kirk J.T.O. 1994. Light and Photosynthesis in the aquatic environment. 2nd ed. Cambridge University Press, Cambridge, 254–258.
  • Kohl J., Nicklisch A. 1988. Ökophysiologie der Algen, G. Fischer, Stuttgart
  • Lewandowski J., Schauser I., Hupfer M. 2002. Die Bedeutung von Sedimentuntersuchungen für die Seentherapie: Fallbeispiel Auensee in Leipzig. Hydrologie und Wasserbewirtschaftung 46, 2–13.
  • Oskam G. 1978. Die Vorausberechnung der Algenbiomasse in den Biesbosch-Speicherbecken. Theorie und Praxis. DFGW Schriftenreihe Wasser 16, 90–107.
  • Reynolds C.S., Wiseman S.W., Clarke M.J. 1984. Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. Journal of Applied Ecology 21, 11–39.
  • Scharf B. 1984. Errichtung und Sicherung schutzwürdiger Teile von Natur und Landschaft mit gesamtstaatlich repräsentativer Bedeutung. Beispiel: Meerfelder Maar. Natur und Landschaft 59, 21–27.
  • Scharf B., Hamm A., Steinberg C. 1984. Seenrestaurierung. In: Limnologie für die Praxis – Grundlagen des Gewässerschutzes, Landsberg/Lech, Ecomed-Verlag.
  • Schreiber U., Tsuyoshi E., Hualing M., Asada K. 1995. Quenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiology 36, 873–882.
  • Soeder C.J. 1980. Massive Cultivation of microalgae: results and prospects, Hydrobiologia 72, 197–209.
  • Steinberg C. 1983. Effects of artificial destratification on the phytoplankton populations in a small lake. Journal of Plankton Research 5, 855–864.
  • Steinberg C., Tille-Backhaus R. 1990. Re-occurrence of filamentous cyanobacteria during artificial destratification of a small lakes. Journal of Plankton Research 12, 661–664.
  • Steinberg C., Zimmermann G. 1988. Intermittent destratification:A therapy measure against cyanobacteria in lakes. Environmental Technology Letters 9, 337–350.
  • Steinberg C.E.W., Gruhl E. 1992. Physical measures to inhibit planktonic cyanobacteria. In Sutcliffe D.W., Jones J.G. (eds.), Eutrophication: Research and Application to Water Supply, 163–184. Freshwater Biological Association, Cumbria
  • Wilhelm C., Volkmar P., Lohmann P., Becker A., Meyer M. 1995. The HPLC-aided pigment analysis of phytoplankton cells as a powerful in water quality control. Journal of Water Science, Research and Technology - Aqua 44, 132–141.
  • Walsby A.E. 1997. Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytologist 136, 189–209.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0007-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.