PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal parameters of solids determination by the photodeflection method - theories and experiment comparison

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the application of complex geometrical optics equations to sample thermal parameters determination by the photodeflection method. The thermal diffusivity of a sample is determined using the four parameters least-squares-fitting of theoretical dependence of normal photodeflection signal on angular modulation frequency to the experimental data. The calculation of the signal on the basis of complex geometrical optics is proved to be more accurate approach of determining the sample thermal diffusivity than that based on the geometrical and wave optics.
Czasopismo
Rocznik
Strony
445--458
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
  • Institute of Physics, Silesian University of Technology, ul. Bolesława Krzywoustego 2, 44-100 Gliwice, Poland, dkorte@polsl.pl
Bibliografia
  • [1] SALAZAR A., SANCHEZ-LAVEGA A., FERNANDEZ J., Theory of thermal diffusivity determination by the ‘mirage’ technique in solids, Journal of Applied Physics 65(11), 1989, pp. 4150–6.
  • [2] GLAZOV A.L., MURATIKOV K.L., Measurement of thermal parameters of solids by a modified photodeflection method, Optical Engineering 36(2), 1997, pp. 358–62.
  • [3] AAMODT L.C., MURPHY J.C., Photothermal measurements using a localized excitation source, Journal of Applied Physics 52(8), 1981, pp. 4903–14.
  • [4] LEGAL LASALLE E., LEPOUTRE F., ROGER J.P., Probe beam size effects in photothermal deflection experiments, Journal of Applied Physics 64(1), 1988, pp. 1–5.
  • [5] JIANHUA ZHAO, JUN SHEN, CHENG HU., Continuous-wave photothermal deflection spectroscopy with fundamental and harmonic responses, Optics Letters 27(20), 2002, pp. 1755–7.
  • [6] ROHLING J.H., JUN SHEN, JIANQIN ZHOU, GU C.E., MEDINA A.N., BAESSO-ML., Application of the diffraction theory for photothermal deflection to the measurement of the temperature coefficient of the refractive index of a binary gas mixture, Journal of Applied Physics 99(10), 2006, p. 103107.
  • [7] LI B., XIONG S., ZHANG Y., Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation, Applied Physics B: Lasers and Optics 80(4–5), 2005, pp. 527–34.
  • [8] KORTE KOBYLIŃSKA D., BUKOWSKI R.J., BURAK B., BODZENTA J., KOCHOWSKI S., Photodeflection signal formation in photothermal measurements: comparison of the complex ray theory, the ray theory, the wave theory, and experimental results, Applied Optics 46(22), 2007, pp. 5216–27.
  • [9] KORTE KOBYLIŃSKA D., BUKOWSKI R.J., BURAK B., BODZENTA J., KOCHOWSKI S., The complex ray theory of photodeflection signal formation: comparison with the ray theory and the experimental results, Journal of Applied Physics 100(6), 2006, p. 63501.
  • [10] BUKOWSKI R.J., KORTE D., Perturbation calculus for eikonal application to analysis of the deflectional signal in photothermal measurements, Optica Applicata 32(4), 2002, pp. 817–28.
  • [11] BUKOWSKI R.J., KORTE D., Influence of probing beam focusing on photothermal signal, Journal de Physique IV: Proceedings 109, 2003, pp. 19–31.
  • [12] BUKOWSKI R.J., KORTE D., Deflective signal analysis in photothermal measurements in the frame of complex geometrical optics, Optica Applicata 35(1), 2005, pp. 77–97.
  • [13] KOBYLIŃSKA D., BUKOWSKI R.J., BURAK B., KOCHOWSKI S., Gaussian optical beam propagation in thermal wave field – ray theory, the complex ray theory and experimental results, Journal de Physique IV: Proceedings 129, 2005, pp. 231–6.
  • [14] BUKOWSKI R.J., Geometrical optics application in description of gaussian beam propagation In an optically homogenous medium, Proceedings of the 2nd National Conference Physical Basis of the Nondestructive Investigations, Gliwice Chapter of the Polish Physical Society and Institute of Physics of the Silesian University of Technology, Gliwice’97 (in Polish).
  • [15] BODZENTA J., Thermal wave in photothermal measurements of solid states, Zeszyty Naukowe Politechniki Śląskiej, Seria: Matematyka – Fizyka, z. 85, 1999 (in Polish).
  • [16] CARSLAW H.S., JAEGER J.C., Conduction of Heat in Solids, Oxford University Press, Oxford 1959.
  • [17] KRAVTSOV JU.A., ORLOV JU.I., Geometrical Optics of the Nonhomogeneous Media, WNT, Warsaw 1993 (in Polish).
  • [18] GLAZOV A.L., MURATIKOV K.L., Photodeflection signal formation in thermal wave spectroscopy and microscopy of solids within the framework of wave optics. ‘Mirage’ effect geometry, Optics Communications 84(5–6), 1991, pp. 283–9.
  • [19] MURATIKOV K.L., GLAZOV A.L., Measurement of thermophysical parameters of bulk materials by a photodeflection method, Technical Physics Letters 21(11), 1995, pp. 876–8.
  • [20] MURATIKOV K.L., GLAZOV A.L., WALTHER H.G., Photothermal measurement of the thermal parameters of volume materials and thin films by the photodeflection method, High Temperatures – High Pressures 31(1), 1999, pp. 69–73.
  • [21] WALTHER H.G., MURATIKOV K.L., GLAZOV A.L., Thermal diffusivity determination by the photodeflection method. The influence of wave optical effects, Journal de Physique IV: Colloque 4(C7), 1994, pp. C7/291–4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0006-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.