PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon dioxide detection using NIR diode laser based wavelength modulation photoacoustic spectroscopy

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A photoacoustic sensor using a laser diode emitting near 1573 nm in combination with a dual-microphone resonant photoacoustic cell has been developed for carbon dioxide trace gas analysis at atmospheric pressure. Wavelength-modulation scheme and 1f detection for CO2 concentration measurements in Ar are demonstrated. The noise equivalent absorption sensitivity of NEAS(1? ) = 1.01×10-8 Wcm-1/Hz1/2, corresponding to a detection limit of 30 parts in 106 by volume (ppmv) for a 100 s integration time and 4.5 mW average laser power. The photoacoustic response of CO2 dependence on the buffer gases with different mixture ratio of Ar and N2 was investigated. Finally, the possibility to make use of the sensor for measurements of ambient CO2 is also presented.
Czasopismo
Rocznik
Strony
341--352
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
autor
autor
autor
  • Environmental Spectroscopy Laboratory, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, People Republic of China, ljs0625@126.com
Bibliografia
  • [1] POUCHET I., ZÉNINARI V., PARVITTE B., DURRY G., Diode laser spectroscopy of CO2 in the 1.6 m region for the in situ sensing of the middle atmosphere, Journal of Quantitative Spectroscopy andRadiative Transfer 83(3–4), 2004, pp. 619–28.
  • [2] DING Y., MACKO P., ROMANINI D., PEREVALOV V.I., TASHKUN S.A., TEFFO J-L., HU S-M.,CAMPARGUE A., High sensitivity cw-cavity ringdown and Fourier transform absorption spectroscopies of 13CO2, Journal of Molecular Spectroscopy 226(2), 2004, pp. 146– 60.
  • [3] MODUGNO G., CORSI C., GABRYSCH M., MARIN F., INGUSCIO M., Fundamental noise sources ina high-sensitivity two-tone frequency modulation spectrometer and detection of CO2 at 1.6 m and 2 m, Applied Physics B: Lasers and Optics 67(3), 1998, pp. 289–96.
  • [4] BESSON J-P., SCHILT S., THÉVENAZ L., Sub-ppm multi-gas photoacoustic sensor, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 63(5), 2006, pp. 899–904.
  • [5] KOSTEREV A.A., TITTEL F.K., Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser, Applied Optics 43(33), 2004, pp. 6213–7.
  • [6] WEBBER M.E., PUSHKARSKY M., PATEL C.K.N., Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers, Applied Optics 42(12), 2003, pp. 2119–26.
  • [7] BIJNEN F.G.C., HARREN F.J.M., HACKSTEIN J.H.P., REUSS J., Intracavity CO laser photoacoustic tracegas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles, AppliedOptics 35(27), 1996, pp. 5357–68.
  • [8] SHI Q., HU S.M., CHEN J., HAO L.Y., HAN J.X., ZHU Q.S., Chinese Journal of Chemical Physics 11, 1998, p. 20.
  • [9] WERLE P., MÜCKE R., D´AMATO F., LANCIA T., Near-infrared trace-gas sensors based on room-temperature diode lasers, Applied Physics B: Lasers and Optics 67(3), 1998, pp. 307–15.
  • [10] BESSON J-P., SCHILT S., THÉVENAZ L., Multi-gas sensing based on photoacoustic spectroscopy using tunable laser diodes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60(14), 2004, pp. 3449–56.
  • [11] BOZÓKI Z., SZAKÁLL M., MOHÁCSI Á., SZABÓ G., BOR Z., Diode laser based photoacoustic humidity sensors, Sensors and Actuators B: Chemical 91(1–3), 2003, pp. 219–26.
  • [12] HITRAN2004 database, www.hitran.com.
  • [13] SCHILT S., THÉVENAZ L., Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results, Infrared Physics and Technology 48(2), 2006, pp. 154–62.
  • [14] KARBACH A., HESS P., High precision acoustic spectroscopy by laser excitation of resonator modes, Journal of Chemical Physics 83(3), 1985, pp. 1075–84.
  • [15] JOVANOVIC-KUREPA J., MARKUSEV D.D., TERZIC M., Multiple absorption and relaxation processes in SF6-CH4 mixtures: an experimental study, Chemical Physics 211(1–3), 1996, pp. 347–58.
  • [16] SCHILT S., BESSON J-P., THÉVENAZ L., Near-infrared laser photoacoustic detection of methane: the impact of molecular relaxation, Applied Physics B: Lasers and Optics 82(2), 2006, pp. 319–28.
  • [17] WYSOCKI G., KOSTEREV A.A., TITTEL F.K., Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at = 2m, Applied Physics B: Lasers and Optics 85(2–3), 2006, pp. 301–6.
  • [18] GEBHARDT F.G., SMITH D.C., Kinetic cooling of a gas by absorption of CO2 laser radiation, Applied Physics Letters 20(3), 1972, pp. 129–32.
  • [19] HAMMERICH M., ÓLAFSSON A., HENNINGSEN J., Photoacoustic study of kinetic cooling, Chemical Physics 163(2), 1992, pp. 173–8.
  • [20] WALKER T.W., BOCK G.F., HEIMLICH R., Kinetic cooling observation with a CW CO2 laser, Applied Optics 16(5), 1977, pp. 1342–4.
  • [21] VERES A., BOZOKI Z., MOHACSI A., SZAKALL M., SZABO G., External cavity diode laser based photoacoustic detection of CO2 at 1.43 m: the effect of molecular relaxation, Applied Spectroscopy 57(8), 2003, pp. 900–5.
  • [22] CATTANEO H., LAURILA T., HERNBERG R., Photoacoustic detection of oxygen using cantilever enhanced technique, Applied Physics B: Lasers and Optics 85(2–3), 2006, pp. 337– 41.
  • [23] WERLE P., MÜCKE R., SLEMR F., The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS), Applied Physics B: Lasers and Optics 57(2), 1993, pp. 131–9.
  • [24] WERT B.P., FRIED A., RAUENBUEHLER S., WALEGA J., HENRY B., Design and performance of a tunable diode laser absorption spectrometer for airborne formaldehyde measurements, Journal of Geophysical Research 108(D12), 2003, p. 4350.
  • [25] NELSON D.D., MCMANUS B., URBANSKI S., HERNDON S., ZAHNISER M.S., High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60(14), 2004, pp. 3325–35.
  • [26] LEWICKI R., WYSOCKI G., KOSTEREV A.A., TITTEL F.K., Carbon dioxide and ammonia detection Rusing 2 m diode laser based quartz-enhanced photoacoustic spectroscopy, Applied Physics B: Lasers and Optics 87(1), 2007, pp. 157–62.
  • [27] FISCHER C., SOROKIN E., SOROKINA I.T., SIGRIST M.W., Photoacoustic monitoring of gases rusing a novel laser source tunable around 2.5 m, Optics and Lasers in Engineering 43(3–5), 2005, pp. 573–82.
  • [28] LAURILA T., CATTANEO H., PÖYHÖNEN T., KOSKINEN V., KAUPPINEN J., HERNBERG R., Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser, Applied Physics B: Lasers and Optics 83(2), 2006, pp. 285–8.
  • [29] LAURILA T., CATTANEO H., PÖYHÖNEN T., KOSKINEN V., KAUPPINEN J., HERNBERG R., Cantilever- -based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser, AppliedPhysics B: Lasers and Optics 83(4), 2006, p. 669.
  • [30] SIGRIST M.W., BOHREN A.M., CALASSO I.G., NÄGELE M., ROMANN A., SEITER M., Laser spectroscopic sensing of air pollutants, Proceedings of the SPIE 4063, 2000, pp. 17–25.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0006-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.