PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zróżnicowanie wymiaru fraktalnego wybranych komponentów pokrycia terenu na tle geomorfologii zlewni Strugi Toruńskiej

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Differentiation of fractal dimensions in selected land cover components on geomorphological background of Struga Toruńska catchment
Języki publikacji
PL
Abstrakty
EN
Environment is a complex and dynamic system with multiplicity of conncections and feedback. For that reason it seems important in environmental studies to establish regularity in the course of phenomena as well as to analyse geodiversity of that system. Varied methods have been suggested to investigate dependencies and diversity between components. Since the 70s the fractal dimension has found recognition in many scientific disciplines. Also in the Earth sciences some authors used it mainly to analyse river network, coast line development, relief and climatic phenomena. The aim of the authors. Research was to assess potential use of the fractal dimension rate in the analysis of dependencies between the spatial distribution, the shape of selected elements in Struga Toruńska catchment and its morphology. The scope of research was divided into the following stages: 1. Building of digital models of selected components in the basin: water reservoirs, wooded areas, rivers, streams and irrigation channels, marshes and relief; 2. Assigning of the fractal dimension for all components; 3. Overlay of 4 sq. km grids and calculating their fractal dimensions to assess the complexity and density of spatial distribution of geocomponents; 4. Assessment of the geocomponents. fractal values; 5. Establishing dependencies between the fractals. distribution for the range and shape of the components and the relief. One of the possible methods to define the fractal dimension is the Mandelbrot box method (1976). The analysed object, in our case the catchment.s border, is overlayed by grids of two different sizes. Further on, the number of boxes is counted and put on a graph where an X axis has value log(1/s), axis Y log(N(s)), and the line allows to assign the box dimension of the object according to the formula: The dimension of natural elements is not an integral number but depends on the space dimension a point in the object of zero-dimensional size (fractal dimension Df = 0), a line is the object of onedimensional size (Df=1), an area - two-dimensional size (Df=2) etc. The research area is the Struga Toruńska basin of the size of 334,74 km2. It is located on Cheuminskie Lakeland. Its relief is represented by young glacial morphology. The basin is divided into the northern and southern part, depending on geomorphological factors. In the northern part the relief maliny consists of an undulating and hummocky moraine plateau, biogenic accumulation planes and outwash planes. In the southern part, the topography is represented by a flat moraine plateau and vast out-wash planes. The differentiation between them is very well reflected by fractal rates of the examined components. It shows that in the northern part is more diversified in all components than the southern part of the Struga Toruńska Basin. One-dimensional fractal dimension parameters are typical to watercourses and their highest number is represented within the range [1.01; 1.2]. It shows that main watercourses are similar to straightline canals. The highest number of lakes, marshes and forests is included in zero-dimensional fractal rate parameters. It testifies high fragmentation of these components in the Struga Torunska Basin. The analysis of dependence between the types of relief (geomorphological units) and the fractal dimension in grids assigned show that the undulating moraine plateau is correlated with the highest mean values of the relief. The fractal dimensions of the biogenic accumulation plane is correlated with the highest mean values of watercourses and lakes fractal dimension, the out-wash plane is correlated with the highest mean values of forests fractal rate. The lowest Pearson.s correlation parameters are distributed between flat the moraine plateau and all examined components. It shows that the plateau lowers the landscape value. The study of dependences between the type of relief and selected environmental components conducted with the use of fractal geometry proved the usefulness of the suggested methodology in the analysis of geodiversity.
Czasopismo
Rocznik
Strony
117--126
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
autor
Bibliografia
  • 1. Daya Sagar B.S., 1996: Fractal relation of morfhological Skelton, Chaos Soliton & Fractals 7, 11, ss. 1871- 1879.
  • 2. De Cola L., Lam, N., 1993: Fractals in geography, Prentice-Hall.
  • 3. Fac-Beneda J., 2003: Wymiar fraktalny sieci rzecznej uporządkowanej metodą Hortona-Strahlera i metodą Drwala, [W:] Gołębiewski, R. (Red.): Ewolucja pojezierzy i Pobrzeży Południowobałtyckich, Katedra Geomorfologii i Geologii Czwartorzędu UG, Gdańsk, ss. 27-36.
  • 4. Kudrelewicz J., 1996: Fraktale i chaos, Warszawa, WNT.
  • 5. Luc M., 2004: Przemiany wybranych elementów .rodowiska przyrodniczego zlewni Strugi Toruńskiej od końca VIII w. do początku XXI w. [W:] Kejna, M., Uscka, J. (Red.): Funkcjonowanie i monitoring geosystemów w warunkach narastającej antropopresji Zintegrowany monitoring .rodowiska przyrodniczego, Biblioteka Monitoringu .rodowiska, Turpress, Toruń, ss. 401-418.
  • 6. Magnuszewski A., 1993: Wymiar fraktalny współczesnych sieci rzecznych, Przegląd Geofizyczny 38, 2, ss. 121-130.
  • 7. Mandelbrot B.B., 1976: How long is the coastline of Britain? Statistical self-semilarity and fractional dimension, Science 156, ss. 636-638.
  • 8. Mandelbrot B.B., 1983: The fractal geometry of nature, New York, W.F. Freeman and Co.
  • 9. Niewiarowski, W., 1996: Budowa geologiczna i rze.ba terenu [W:] Zintegrowany monitoring środowiska przyrodniczego . stacja bazowa w Koniczynce, Biblioteka Monitoringu .rodowiska, Warszawa, ss. 41-59.
  • 10. Outcalt S.I., Hinkel K.M., Nelson, F.E., 1994: Fractal physiography, Geomorphology 11, ss. 91-106.
  • 11. Pietrucień, Cz., 1993: Zmiany hydrologiczne i przestrzenne obszarów podmokłych [W:] Dynowska, I. (Red.) Przemiany stosunków wodnych w Polsce w wyniku procesów naturalnych i antropogenicznych, Kraków.
  • 12. Richling A., 1992: Kompleksowa geografia fizyczna, PWN, Warszawa.
  • 13. Rieu M., Sposito G., 1991: Fractal fragmentation, soil porosity, and water properties: I. Theory, Soil Science Society of America Journal 55, ss. 1231-1238.
  • 14. Selvam A.M., 1990: Deterministic chaos, fractals and quantumluke mechanics in atmospheric flows, Canadian Journal of Physics 68, ss. 831-841.
  • 15. Sinkiewicz M., 1995: Przeobrażenia rzeźby terenu i gleb w okolicy Biskupina wskutek denudacji antropogenicznej, [W:] Niewiarowski, W. (Red.): Zarys zmian środowiska geograficznego okolic Biskupina pod wpływem czynników naturalnych i antropogenicznych w późnym glacjalne i holocenie, Turpress, Toruń, ss. 247-279.
  • 16. Thomas T.R., Rosen, B.G., Amini, N., 1999: Fractal characterization of the anisotropy of rough surfaces, Wear 232, ss. 41-50.
  • 17. Veltri M., Veltri P., Maiolo, M., 1995: On the fractal description of natural channel networks, Journal of Hydrology 187, ss. 137-144.
  • 18. Weiss J., 2001: Fracture and fragmentation of ice: a fractal analysis of scale invariance, Engineering Fracture Mechanics 68, ss. 1975-2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0005-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.