PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Podstawowe zagadnienia przyczepności stali i betonów w elementach żelbetowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Basics of bond between steel and concrete in reinforced concrete structures
Języki publikacji
PL
Abstrakty
PL
Typowe konstrukcje żelbetowe są tak projektowane, aby zapewnić współpracę stali zbrojeniowej i betonu przy przenoszeniu działających obciążeń. Po zarysowaniu transfer sił ze stali na beton bazuje na tak zwanej wtórnej przyczepności, której głównymi czynnikami są zjawiska związane z mechanicznym zazębieniem żeberek zbrojenia o beton oraz tarciem towarzyszącym przemieszczaniu się pręta. Zjawisko to ma kluczowe znaczenie w analizach odksztalcalności zarysowanych konstrukcji żelbetowych. Jest ono wszechstronnie badane w świecie od wielu lat. Ostatnimi czasy rozwój nowych technologii, dotyczących zarówno betonu jak i zbrojenia znacząco poszerzył obszar prowadzonych prac eksperymentalnych i analiz teoretycznych. W literaturze światowej dostępna jest duża liczba różnorakich publikacji na temat przyczepności, ale nie dotyczy to niestety Polski. Książka ta ma na celu między innymi wypełnienie tej luki. Analizy przyczepności można prowadzić na trzech poziomach ogólności - żeberka, pręta zbrojeniowego oraz elementu konstrukcji. Badania związane z pierwszym poziomem są dobrze rozwinięte i dostarczają zadowalające rezultaty, które dotyczą mechanizmów niszczenia przyczepności i wpływu na niej różnorodnych czynników. Brak jest natomiast satysfakcjonujących wyników badań, odnoszących się do problemu przyczepności w skali całego pręta i elementu konstrukcyjnego. Próby transponowania wyników badań i teorii, odnoszących się do bardzo krótkich elementów na te wyższe poziomy analizy, okazywały się nieudane. W książce przedstawiono nową autorską koncepcję teoretyczną, dotyczącą drugiego poziomu analizy przyczepności. Jej podstawą są funkcje przyczepności opisujące przebieg naprężeń przyczepności wzdłuż osi pręta w funkcji zarówno położenia przekroju jak i wartości naprężeń w zbrojeniu. Zaproponowane rozwiązanie teoretyczne pozwala uwzględniać i szczegółowo analizować te zagadnienia, które do tej pory umykały możliwości uwzględnienia. Cenną zaletą opracowanej koncepcji jest możliwość dokonania względnie łatwego, a przy tym spójnego przejścia w analizach z poziomu drugiego na trzeci. Prace eksperymentalne weryfikujące modele teoretyczne były prowadzone w Instytucie Budownictwa Politechniki Wrocławskiej w latach od 1996 do 2002. Wykorzystano w nich indywidualnie zaprojektowane elementy do badań, dostosowane do ogólnej koncepcji teoretycznej. Pozwoliło to na precyzyjny i pełny pomiar odkształceń w zbrojeniu i otaczającym betonie, a specyficzny kształt elementów umożliwiał wykorzystanie optycznych technik pomiarowych, co przekładało się na możliwość prowadzenia obserwacji zjawisk zachodzących na dużych powierzchniach.
EN
A typical reinforced concrete structure is designed under the assumption that concrete and steel bars interact to carry loads. As long as there are no cracks in the tension zone, interaction is based on the so-called primary, perfect bond. This means that in any cross section, the strain value in a steel bar is the same as in adjacent concrete, i.e., ss = ea. At those levels of loading the bond relies on adhesion forces. After cracking the situation is much more complicated. Steel strains are much greater than concrete ones and there is a slip between a steel bar and surrounding concrete, which breaks an adhesion. The transfer of tensile forces is mainly based on the bearing of lugs between steel ribs and friction of steel-concrete surface. As a cracking state is typical of concrete members with tensile zone, such a bond mechanism is more important than primary one. The bond between concrete and steel bars is of fundamental importance to deformation characteristics of cracked concrete structures. It has been extensively studied for many years, especially, starting from the early 1970's. In bond testing, it is very important to choose a proper specimen. In most experiments, members of a very short embedded length are used, according to RILEM recommendations. This allows us to assume that bond stress is constant and one can only measure an acting force and a relative slip between steel bar and surrounding concrete. Results of such experiments are presented in the form of function r= r(A). Experiments on specimens with a very short transfer length are relatively cheap and simple. These allow us to examine many interesting parameters, e.g., concrete strength, bar rib patterns, confinement effect and loading history. Testing should explain the influence of those variables on the bond strength, the average bond stress along the development length and the initial bond stiffness. The best results have been obtained in testing the bond strength. Bond strength is a maximum value of bond stress which can be obtained in an embedded bar without failure. There are two patterns of this failure. The first one consists in pulling out a bar from concrete member and the second is connected with a concrete cover splitting. The first type of bond strength has much higher value while the second is more apt to possible failure mode in a real concrete structure. Concrete tension strength appears to be the main factor governing the bond strength. Its increase causes an increase of bond strength. More detailed experiments and studies led to a conclusion that also concrete compression strength must be taken into account. This is particularly important for high strength concretes, in which correlation between tension and compression strengths differs from an ordinary concrete. In high-performance concrete dosage of silica fume, superplasticizer and fibres has strong influence on bond strength. As far as experimental data are concerned, lots of theoretical models were presented. The simplest of them are based on elastic cracked model of concrete. There also exist more sophisticated models such as elastic-cohesive or elastic-plastic-cohesive ones. Deformed bars have different patterns of ribs. Since concrete resistance between lugs is the source of bond strength, the rib characteristics are very important. The main parameters are: rib height, rib sparing and an angle between lug surface and a bar axis. For practical use, a global parameter related to rib area fR is used. All tests confirm that an increase of fR leads to higher values of the bond strength. This is advantageous for the sake of a limit crack width, for higher initial bond stiffness and higher average bond stresses imply smaller crack spacing and crack width. A bar geometry with large fR leads to a considerable contribution of concrete between cracks and thus the rotation capacity of plastic hinges is significantly reduced. This is disadvantageous for indeterministic concrete structures. Moreover, also bendability properties of bars become worse. Confinement phenomenon is due to a concrete cover, transverse bars or transverse stresses acting on a member. A positive influence of a concrete coveris best known. If a cover is higher than three times a steel bar, the pull-out failure is only possible and thus the bond strength is much bigger than during splitting failure. A similar effect can be obtained if stirrups are spread close enough and are under stress. In some cases external pressure, for example, from bearing, improves bond conditions. It is worth noticing that all these phenomena have positive influence mostly on the bond strength. Tests on members with a very short embedded length cannot give an explanation of their weight on average bond stress or an initial stiffness. There are few tests on cyclic or long term loading. In fatigue tests on specimen with a short development length, bond tendends to diminish. If there were slip-control tests, a bond stress would decrease to its residual value. This depended on a friction between steel and concrete. In cases of force-controlled tests, slip values were increasing and when they exceeded a value comparable to ribs spacing, failure occurred. Such results are very negative from the point of view of member serviceability, but in some tests where embedded lengths were higher than twenty times a steel bar there was not any failure. Results of long term test differ from one another and it is difficult to say if there exists something that we can call bond creep. Some other parameters such as effect of casting position, maturing, and group bars and bar position, extremely low or high temperatures can be taken into account during tests on short members. They mainly provide information about the obtained bond strength but results of those studies seem to be inadequate to concrete structure analysis. In engineering practice and codes, they are unnoticed. There are also tests where a specimen span is similar to a typical spacing of cracks. Such tests are called double pullout. In that case axially situated bar is specially instrumented to make measurement of steel strains possible. A typical steel bar is sawn into two parts. Then, each half-bar is milled to provide a channel to install strain gauges and later put together again. During tests, an acting force and strains are measured. Bond stresses are calculated as a change of steel strains between two succeeding gauges. Slips were calculated by integration of steel strains. Sometimes also strains in concrete were measured. Such experiments are much more complicated and expensive, but obtained results, very often, have a very large scatter. The most interesting conclusion can be summarized to a thesis that bond stresses are not only a function of slips but also a distance from a cracked cross section. The tests described can be considered as connected with the first level of bond problems. The second one is called bar scale and at that level the reinforcement bar and surrounding concrete are treated as continuum. The third level is a member scale. These levels are very important from a practical point of view. At the second level the problem of crack width and spacing can be analyzed on the basis of bond theories. In a member scale the effect of concrete strains remaining in tension zone between cracks, called tension stiffening, is very important for proper determination of the whole member stiffness. In literature some authors attempt to present their ideas of describing the cracking processes and stiffening changes after cracking in terms of bond concepts. Practically all of them are limited to theoretical studies based on experimental data taken from the first level. Since these data are from a specimen of a very short embedded length, the results are rather of little importance from practical point of view. They overlook a lot of phenomena, which take place in real concrete structures. One of the most important differences is the presence of internal cracks in a real member. Internal cracks arise close to steel bars and develop towards a member edge. Until they are inside a member they are not visible but they change steel strain distribution along a bar and they have an influence on bond. They can reach an edge and they are the so called "secondary" cracks. The phenomenon of internal cracks is answerable for great scatter of observed crack width and spacing. Analysis of internal crack and bond can explain in a convincing way the phenomenon of irregular concrete strain distribution in uniaxial tension reinforced cross section. Theoretical assumptions and a kind of specimen for tests are very strictly connected. In theoretical studies an assumption that bond stress is a function of both distance from a cracked cross section and steel slip was made. Moreover, two bond functions were determined to describe bond phenomenon. The first one is suitable if a load level is very close to cracking and, in a member, there still exists a cross section where strains in a steel bar and surrounding concrete are the same. The second function is used when more than one crack exists in a specimen. Theoretical studies allow us to describe some phenomena which were omitted in earlier theories. Especially, this concerns occurrence of internal cracks, their development and turning into secondary cracks. Theoretical model is able to explain non-uniform concrete strain distribution in perpendicular cross sections. Theoretical studies can be applied not only for members under axial tension, but also for beams and structures under eccentric tension. Experimental research was performed at the Institute of Civil Engineering Wroclaw University of Technology from the beginning of the 1990s to 2001. The research schedule and types of tested elements were chosen to obey the theoretical concepts. The experiments were carried out on members under axial tension, bending and eccentric tension. Specimens were designed and prepared to allow direct observation of internal cracks and measurements of steel and concrete strains. The use of steel bars moulded to their half diameters as reinforcements was the key solution. Then they were placed in such a way that their even surfaces faced external concrete surface. Such specimens enable direct measurement of strains in a steel bar thanks to strain gauges glued to the bar surface. It was also easy to measure strains in surrounding concrete in many cross sections and variations. In some cases, elastooptical surfaces were glued to concrete. The coating position was changing - it covered either 14 or '/< of a specimen even surface. The visualization enables one to watch continuously the deformation in interesting regions. Experimental research gave a lot of information about steel and concrete strain distribution, formation of bond stresses, internal cracks and so on. Experimental data confirm theoretical prediction and allows us to make the model more precise. Specific kind of specimens allows us to spread knowledge of bond phenomenon and explaining some sophisticated problems. On the other hand, they are still far from real concrete structures and specimens used for classic testing of beam deflection or width of cracks. It seems reasonable to design a testing procedure in which proposed "bond" specimens and classical ones will be tested together under the same conditions. This will allow a significant improvement in bond research and practical application of them.
Twórcy
  • Instytut Budownictwa Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • Rozdział 1
  • [1] CEB-FIP, Task Group Bond Models: Bond of reinforcement in concrete, biulletin 10, 2000.
  • [2] EN 1992-1-1, EC2: Design of concrete structures ‒ Parti -1: General rules and rules for buildings, 2004.
  • [3] PN-B-03264: Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie, grudzień 2002.
  • [4] AC1 318-02, Building Code Requirements for Structural Concrete and Commentary, 2002.
  • [5] Bond in Concrete, Proceedings, Applied Science Publishers, ed. by P. Bartos, London 1982.
  • [6] International Conference on Bond in Concrete, Proceedings, Riga 1992.
  • [7] Bond in Concrete -from research to standards, Proceedings, Budapest 2002.
  • [8] Pędziwiatr J., Styś D., Problematyka zakotwienia prętów w żelbecie w świetle wyników badań nad przyczepnością, XLVIII Konferencja Naukowa KILiW PAN i Komitetu Nauki PZITB, Opole-Krynica 2002, s. 375-382.
  • [9] Lackner R., Mang H., Scale Transaction in Steel-Concrete Interaction. I: Model, Journal of Engineering Mechanics, Vol. 129, No. 4, 2003, s. 393M02.
  • [10] Cairns J., Plizzari G., Do we need a standard test for bond, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 259-267.
  • Rozdział 2
  • [1] Abrishami H., Mitchell D., Analysis of Bond Stress Distribution in Pullout Specimens, Journal of Structural Engineering, Vol. 122, No. 3, 1996, s. 255-261.
  • [2] Abrishami H., Mitchell D., A new approach for studying bond characteristics, Proc. Int. Conf.„Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.28-1.37.
  • [3] RILEM/CEB/FIP, Recommendations on reinforcement steel for reinforced concrete, Revised edition of RC6 Bond test for reinforcement steel: (2). Pull-out test. CEB News, No. 73, May 1983.
  • [4] CEB-FIP, Task Group Bond Models: Bond of reinforcement in concrete, biulletin 10, 2000.
  • [5] Youlin X., Experimental study of bond-anchorage properties for deformed bars in concrete, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.9-1.17.
  • [6] Jankowski L., Pędziwiatr J., Styś D., Analiza przyczepności w mimośrodowo rozciąganych elementach żelbetowych, [w:] VII Krajowa Konferencja Mechaniki Pękania. Kielce-Cedzyna, 1999, s. 166-176.
  • [7] Cairns J., Plizzari G., Do we need a standard test for bond, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 259-267.
  • [8] Kankam Ch., Relationship of Bond Stress, Steel Stress, and Slip in Reinforced Concrete, Journal of Structural Engineering, Vol. 123, No. 1, 1997, s. 79-85.
  • [9] Tepfers, R., Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars, Magazine of Concrete Research, Vol. 31, No. 106, 1979, s. 3-12.
  • [10] Tepfers, R., Olsson P., Ring Tests for Evaluation of Bond Properties of Reinforcing Bars, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.89-1.99.
  • [11] Nilson A., Internal Measurement of Bond Slip, ACI Journal 69(7), s. 439-441.
  • [12] Jiang D., Shah S., Andonian A., Study of the transfer of tensile Forces by Bond, ACI Journal 1984(3), s. 351-359.
  • [13] Tassios T., Koroneos E., Local Bond-Slip Relationships by Means of the Moire Method, ACI Journal 1984(1), s. 27-34.
  • [14] Gambarowa P., Karakoc C., Shear-confinement Interaction at the Bar-to-Concrete Interface, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 82-96.
  • [15] Gambarowa P., Rosati P,. Sharif O., Bond and Splitting in Reinforced Concrete, Proceedings, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.48-1.57.
  • [16] Chapman R., Shah S., Early-age Bond Strength in Reinforcing Concrete, ACI Materials Journal, Vol. 84, No. 6, 1987, s. 501-510.
  • [17] Russo G., Pauletta M., Bond solution for RC elements with concrete in tension, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 316-323.
  • [18] Tastani S., Pantazopoulos J., Experimental evaluation of direct tension ‒ pullout bond test, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 268-276.
  • [19] Chan H., Cheung Y., Huang Y., Crack Analysis of Reinforced concrete Tension Members, Journal of Structural Engineering, Vol. 118, No. 8, August 1992, s. 2118-2132.
  • [20] Yang S., Chen J., Bond Slip and Crack Width Calculations of Tension Members, ACI Structural Journal, July-August 1988, s. 414-122.
  • [21] Kankam CH., A routine method for measuring bond stress, steel strain and slip in RC beams at service loads, Magazine of Concrete Research, Vol. 55, No. 3, 2003, s. 85-93.
  • [22] Base G., Bond, and Control of Cracking in Reinforced Concrete, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 446-447.
  • [23] Cairns J., Plizzari G., Towards a harmonized European bond test, Materials and Structures, 2003, Vol. 36, No. 262, s. 487-506.
  • [24] Cairns J., Abdullah R., Bond Strength of Black and Epoxy-Coated Reinforcement ‒ A Theoretical Approach, ACI Materials Journal, Vol. 93, No. 4, July-August 1996, s. 362-369.
  • [25] Popov E.P, Bond and Anchorage of Reinforcing Bars under cyclic loading, ACI Journal, July-August 1984, s. 340-348.
  • [26] Jeppsson J., Thelandersson S., Behavior of RC beams with loss of bond at longitudinal reinforcement, Journal of Structural Engineering, Vol. 129, No. 10, 2003, s. 1376-1382.
  • [27] Tepfers R., Lapped Tensile Reinforcement Splices, Journal of the Structural Division, Vol. 108, No. ST1, s. 283-301.
  • [28] Vandewalle L., Theoretical Prediction of the Ultimate Bond Strength Between a Reinforcement Bar and Concrete, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.1-1.8.
  • [29] Cairns J., Jones K., An Evaluation of the Bond-Splitting Action of Ribbed Bars, ACI Materials Journal, Vol. 93, No. 1, January-February 1996, s. 10-19.
  • [30] Andreasen S., Anchorage of Ribbed Reinforcing Bars, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.18-1.27.
  • [31] Nielsen C., Bićanić N., Radial fictitious cracking of thick-walled cylinder due to bar pull-out. Magazine of Concrete Research, Vol. 54, No. 3, 2002, s. 215-221.
  • [32] Lackner R., Mang H., Scale Transaction in Steel-Concrete Interaction. I: Model, Journal of Engineering Mechanics, Vol. 129, No. 4, 2003, s. 393-402.
  • [33] Lowes L., Moehle J., Govindjee S., Concrete-Steel Bond Model for Use in FE Modeling of RC Structures, ACI Structural Journal, 2004, Vol. 101, No. 4, s. 501-511.
  • [34] Lundgren K., Bond between bars and concrete. Part 1: Modified model, Magazine of Concrete Research, Vol. 57, No. 7, 2005, s. 371-382.
  • [35] Lundgren K., Magnusson J., Three-Dimensional Modeling of Anchorage Zones in RC, Journal of Engineering Mechanics, Vol. 127, No. 7, 2001, s. 693-699.
  • [36] Lundgren K., Modeling the effect of corrosion on bond in reinforced concrete, Magazine of Concrete Research, Vol. 54, No. 3, 2002, s. 165-173.
  • [37] Vogel T., Schenkel M., Bond behavior of reinforcement with inadequate concrete cover, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 359-366.
  • [38] Kimura H., Jirsa J., Effects of Bar Deformation and Concrete Strength on Bond of Reinforcing Steel to Concrete, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.100-1.109.
  • [39] ACI Committee 408, State of art the Art-Report: Bond under Cyclic Loads, ACI Materials Journal, Vol. 88, No. 6, 1991, s. 669-673.
  • [40] Beeby A., Scott R., Cracking and deformation of axially reinforced members subjected to pure tension, Magazine of Concrete Research, Vol. 57, No. 10, 2005, s. 611-621.
  • [41] Esfahani R., Rangan V., Local Bond Strength of Reinforcing Bars in Normal Strength and High-Strength Concrete, ACI Structural Journal, Vol. 95, No. 2, 1998, s. 96-106.
  • [42] Harajli M., Al.-Hajj J., Bond stress-slip response of reinforcing bars in high-strength concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 570-577.
  • [43] Hamad B., Itani M., Bond Strength of Reinforcement in High-Performance Concrete: The Role of Silica Fume, Casting Position, and Superpliasticizer Dosage, ACI Materials Journal, Vol. 95, No. 5, 1998, s. 499-511.
  • [44] Alavi-Foud, Marzouk H., Bond of high-strength concrete under monotonie pull-out loading, Magazine of Concrete Research, Vol. 56, No. 9, 2004, s. 545-557.
  • [45] Lorrain M., Maurel O., Seffo M., Cracking Behavior of Reinforced High-Strength Concrete Tension Ties, ACI Structural Journal, Vol. 95, No. 5, 1998, s. 626-635.
  • [46] Farra B., Jaccoud J-P., Bond Behavior, Tension Stiffening and Crack Prediction of High Strength Concrete, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 9.1-9.10.
  • [47] Esfahani M , Kianush M., Development/Splice Length of Reinforcing Bars, ACI Structural Journal, Vol. 102, No. 1, 2005, s. 22-30.
  • [48] Soroushian P., Mirza F., Alhozaimy A., Bonding of Confined Steel Fiber Reinforced Concrete to Deformed Bars, ACI Materials Journal, Vol. 91, No. 2 March-April 1994, s. 141-149.
  • [49] Vandewalle L., Dupont D., Influence of steel fibers on local bond behavior, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 783-790.
  • [50] Plizzari G., Lundgren K., Balazs G., Bond and splitting in fiber reinforced concrete under repeated loading, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 221-229.
  • [51 ] Bigaj A., Walraven J. i inni, Bond of reinforcing bars in self-compacting steel fiber reinforced concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 823-830.
  • [52] Hamad B., Harajli H., Effect of fiber reinforcement on bond strength in tension lap splices, ACI Structural Journal, Vol. 98, No. 5, 2001, s. 638-647.
  • [53] Bartos P., Sonebi M., Bond behavior and pull-off test of self compacting concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 511-519.
  • [54] Lorrain M., Daoud A., Bond in self-compacting concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 529-536.
  • [55] Chan Y.-W. i inni, Development of bond Strength of Reinforcement Steel in SCC, ACI Structural Journal, Vol. 100, No. 3, 2003, s. 490-498.
  • [56] Nakano K. i inni, Bond between novel types of concrete matrices and reinforcing bars, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 545-553.
  • [57] Eligehausen R., Mayer U., Influence of relative rib area of reinforcement on the structural behavior of RC members ‒ does an optimal rib pattern exist?, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 335-342.
  • [58] Alander C., The effect of rib geometry on crack widths and the service life of structures, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 343-350.
  • [59] PN-82/H-93215: Walcówka i pręty stalowe do zbrojenia betonu.
  • [60] Biuletyn Informacyjny CPJS 01/2006: Stal zbrojeniowa o podwyższonej ciągliwości ze znakiem EPSTAL.
  • [61] Soretz S., Holzenbein H., Influence of Rib Dimension of Reinforcing Bars on Bond and Bendability, ACI Journal ‒ Symposium Paper, January 1979, s. 111-125.
  • [62] Kimura H., Jirsa J., Effects of Bar Deformation and Concrete Strength on Bond of Reinforcing Steel to Concrete, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.100-1.109.
  • [63] Morita S., Kaku T., Splitting Bond Failures of Large Deformed Reinforcing Bars, ACI Journal Proc., Vol. 76, January 1979, s. 99-110.
  • [64] Kemp E., Wilhelm J., Investigation of the Parameters Influencing Bond Cracking, ACI Journal, Proc., Vol. 76, January, s. 49-71.
  • [65] Mirza S., Houde J., Study of Bond Stress-Slip Relationships in Reinforced Concrete, ACI Journal, Proc., Vol. 76, January, s. 19-46.
  • [66] Goto Y., Cracks formed in concrete around deformed bars, Journal of ACI, Vol. 68, No. 4., April 1971, s. 244-251.
  • [67] Otsuka K., Ozaka Y., Group effect on anchorage strength of deformed bars embedded in massive concrete block, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.38-1.47.
  • [68] Engstrom B., Anchorage of ribbed bars in post-yield stage, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.110-1.119.
  • [69] Salem H., Maekawa K., Pre-and Post yield Finite Element method simulation of bond of ribbed Reinforcing Bars, Journal of Structural Engineering, 2004, Vol. 130, No. 4, s. 671-680.
  • [70] Darwin D., Zuo J., Bond slip of High Relative Rib area Bars under Cyclic Loading, ACI Structural Journal, Vol. 97, No. 2, 2000.
  • [71] ACI 318-02, Building Code Requirements for Structural Concrete and Commentary, 2002.
  • [72] Treece R., Jirsa J., Bond Strength of Epoxy-Coated Reinforcing Bars, ACI Materials Journal, Vol. 86, No. 2, 1989, s. 167-174.
  • [73] Hamad B., Comparative Bond Strength of Coated and Uncoated Bars with Different Rib Geometries, ACI Materials Journal, 1995, Vol. 92, No. 6, November-December, s. 579-590.
  • [74] Cleary D., Ramirez J., Epoxy-Coated Reinforcement under Repeated Loading, ACI Structural Journal, Vol. 90, No. 4, July-August 1993, s. 451-458.
  • [75] Miller G., Kepler J., Darwin D., Effect of Epoxy Coating Thickness on Bond Strength of Reinforcing Bars, ACI Structural Journal, 2003, Vol. 100, No. 3, s. 314-320.
  • [76] Cairns J., Abdullah R., Influence of Rob Geometry on Strength Of Epoxy-Coated Reinforcement Splices, ACI Structural Journal, 1995, Vol. 92, No. 1, s. 23-27.
  • [77] Moehle J.P., et all., Bond Strength of Prefabricated Epoxy-Coated Reinforcement, ACI Structural Journal, 2006, Vol. 103, No. 2, s. 226-233.
  • [78] Tukiainen P., et all., Bonding of hot-dip galvanized reinforcement in concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 324-331.
  • [79] Hamad B., Mike J., Experimental Investigation of Bond Strength of Hot-Dip Galvanized Reinforcement in Normal andHSC, ACI Structural Journal, 2003, Vol. 100, No. 3, s. 465-470.
  • [80] Hamad B., Fakham M., Effect of Confinement on Bond Strength of Hot Dip Galvanized Lap Splices, ACI Structural Journal, 2006, Vol. 103, No. 1, s. 48-56.
  • [81] Malvar J., Confinement Stress Dependent Bond Behavior, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1-79 to 1-88.
  • [82] Malvar J., Bond of Reinforcement Under Controlled Confinement, ACI Materials Journal, Vol. 89, No. 6, 1992, s. 593-601.
  • [83] Nagatomo K., Kaku T., Bond Behavior of Deformed Bars under Lateral Compressive and Tensile Stress, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1-69 to 1-78.
  • [84] PN-B-03264: Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie. Grudzień 2002.
  • [85] EN 1992-1-1, EC2: Design of concrete structures ‒ Part 1-1: General rules and rules for buildings, 2004.
  • [86] Cornelli D., Corrosion Cracking and Bond Strength Modeling for corroded Bars in RC, Magazine of Concrete Research Vol. 99, No. 3, 2002.
  • [87] Mirza S., Amleh L., Effect of concrete w/c ratio and corrosion in concrete mix on bond between steel and concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 285-292.
  • [88] Wong X, Liu X., L., Modeling effect of corrosion on cover cracking and bond in reinforced concrete, Magazine of Concrete Research, Vol. 56, No. 4, 2004, s. 191-199.
  • [89] Elfgren L., Noghabai K., Tension of reinforced concrete prism. Bond properties of reinforcement bars embedded in concrete tie elements. Summary of a RILEM round-robin investigation arranged by TC 147-FMB „Fracture Mechanics to Anchorage and Bond”, Materials and Structures, Vol. 35, July 2002, s. 318-325.
  • [90] Oan Chul Choi, Woong Se Lee, Interfacial Bond Analysis of Deformed Bars to Concrete, ACI Structural Journal, Vol. 99, No. 6, 2002, s. 750-756.
  • [91] Rizkalla S., Hwang L., Shahawi M., Transverse reinforcement effect on cracking behavior of R. C. members, Canadian Journal of Civil Engineering, Vol. 10, 1983, s. 566-581.
  • [92] Jimenez R., White R., Gergely P., Bond and Dowel Capacities of Reinforced Concrete, ACI Journal, 1979, Vol. 76, No. 1, s. 73-92.
  • [93] Jirsa J. et al., Behavior of Multiple Lap Splices in Wide Sections, ACI Journal, January 1979, Vol. 76, No. 1, s. 227-248.
  • [94] Reynolds G., Beeby A., Bond Strength of Deformed Bars, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 434-445.
  • [95] Morita S., Fujii S., Bond Capacity of Deformed Bars due to Splitting Of Surrounding Concrete, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 331-341.
  • [96] Harajli M., Hamad B., Rteil A., Effect of Confinement of Bond Strength between Steel Bars and Concrete, Vol. 101, No. 5, 2004, s. 595-603.
  • [97] Hamad B., Najjar S., Evaluation of the role of transverse reinforcement in confining tension lap splices, Materials and Structures, 2002, Vol. 35. No. 248, s. 219-228.
  • [98] Giuriani E., Plizzari G., Schumm C., Role of Stirrups and Residual Tensile Strength Of Cracked Concrete on Bond, Journal of Structural Engineering, Vol. 117, No. 1, 1991, s. 3-18.
  • [99] Giuriani E., Plizzari G., Interrelation of Splitting and Flexural Cracks in RC Beams, Journal of Structural Engineering, Vol. 124, No. 9, 1998, s. 1032-1040.
  • [100] Rizkalla S., Hwang L., Crack Prediction for Members in Uniaxial Tension, ACI Journal, 1984, s. 572-579.
  • [101] Pędziwiatr J., The influence of cyclic loading on the bond between concrete and steel bars, Arch. Of Civ. Mech. Eng., 2005, Vol. 5, No. 3, s. 43-58.
  • [102] Pędziwiatr J., Minch M., Metoda szacowania wpływu obciążeń cyklicznych na zmiany szerokości rozwarcia rys, XLIII Konferencja Naukowa KILiW PAN i Komitetu Nauki PZITB, Krynica 1997, s. 139-146.
  • [103] Moro M., Ogawa J., Bond behavior of anchored deformed bar under high-stressed reversal loading, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.79-1.88.
  • [104] G. Rehm G., Eligehausen R., Bond of ribbed bars under high cycle repeated loads, ACI Journal, January 1979, Vol. 76, No. 1 - symposium paper, s. 297-309.
  • [105] Balazs L.G., Fatigue of bond, ACI Materials Journal, Vol. 88, No. 6, November-December 1991, s. 620-629.
  • [106] Yankelevsky D. et al., Mathematical model for Bond-Slip Behavior under Cyclic Loading, ACI Structural Journal, Vol. 89, No. 6, 1992, s. 692-698.
  • [107] Yannopoulos P.J., Tassios T.P., Reinforced Concrete Axial Elements Analyzed Under Monotonie and Cyclic Actions, ACI Structural Journal, Vol. 88, No. 1, 1991, s. 3-11.
  • [108] Harmon T., Pochanart S., Bond-slip model for generalized excitations including fatigue, ACI Materials Journal, Vol. 86, No. 5, 1989, s. 465-473.
  • [109] Shipman J., Gerstle K., Bond deterioration in concrete panels under load cycles, ACI Journal, Vol. 76, No. 1 ‒ symposium paper, February 1979, s. 311-325.
  • [110] Soroushian P. et al., Analytical Modeling of Bonded Bars under Cyclic Loads, Journal of Structural Engineering, Vol. 117, No. 1, January 1991, s. 48-60.
  • [111] Konig G., et al., Determination of the bond creep coefficient for self-compacting concrete under cyclic loading, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 246-255.
  • [112] Scott R., Beeby A., Long-term Tension Stiffening Effects In concrete, ACI Structural Journal, Vol. 102, No. 1,2005, s. 31-39.
  • [113] Suzuki K., et al., Bond characteristics of deformed bars under sustained loading, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 7.21-7.28.
  • [114] Rostasy F., Kepp B., Time-Dependence of Bond, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 183-192.
  • [115] Eligehausen R., et al., Creep and Fatigue Analysis of Reinforced Concrete Structures, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 7.29-7.38.
  • [116] Sato R., et al., Long-term behavior of bond in concrete members made of high, middle and low strength concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 174-181.
  • [117] Weiβe D., Holschemacher K., Sand-rich self-compacting concrete time development of bond properties, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 537-544.
  • [118] Koch R., Balazs L., Limit states for long term and cyclic loading, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 211-220.
  • [119] Sager H., Rostasy F., The effest of elevated temperature on the bond behaviour of embedded rein forcing bars, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 206-216.
  • [120] Berra I. et al., Steel-concrete bond deterioration due to corrosion: finite element analysis for different confinement levels, Magazine of Concrete Researches, Vol. 55, No. 3, 2003, s. 237-247.
  • [121] Jirsa O. et ah, Effect of Casting Position on Bond, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 300-307.
  • [122] Chan Y.-W. et all., Development of Bond Strength of Reinforced Steel in SCC, ACI Structural Journal, 2003, Vol. 100, No. 3, s. 490-498.
  • [123] Losberg A., Olsson P-A., Bond Failure of Deformed Reinforcing Bars Based on the Longitudinal Splitting Effect on the Bars, ACI Journal, Vol. 76, No. 1 ‒ symposium paper, February 1979, s. 5-18.
  • [124] Schieβl P., Interaction Between Anchorage of Bond, Hooks and Welded Transverse Bars: Basis for the Design in The German Code and CEB-FIP Model Code, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 424-433.
  • [125] Romanof., Zingone G., Transverse Reinforcement Effect on Tension Stiffening of RC Members, International Conference on Bond in Concrete, Riga 1992, s. 9.27-9.36.
  • [126] Nykyri P., Anchorage of Reinforcement in Concrete Structures, International Conference on Bond in Concrete, Riga, Oct. 1992, s. 1.58-1.68.
  • [127] Yin-Wen Chan, Yong Ciu Chen, Yi-Shi Liu, Effect of consolidation on bond of reinforcement in concrete of different workabilities, ACI Materials Journal, Vol. 100, No. 4, 2003, s. 294-301.
  • Rozdział 3
  • [1] Lucioni B., Lopez D., Danesi R., Bond-slip in RC elements, Journal of Structural Engineering, Nov. 2005, Vol. 131, No. 11, s. 1690-1698.
  • [2] Salari R., Spacone E., Analysis of steel-concrete composite frames with bond-slip, Journal of Structural Engineering, Nov. 2001, Vol. 127, No. 11, s. 1243-1250.
  • [3] Balazs L., G., Cracking Analysis Based on Slip and Bond Stresses, ACI Materials Journal, Vol. 90, No. 4, July-August 1993, s. 340-348.
  • [4] Yang S., Chen J., Bond Slip and Crack Width Calculations of Tension Members, ACI Structural Journal, July-August 1988, s. 414-422.
  • [5] Torres L., et all., Tension-Stiffening Model for Cracked Flexural Concrete Members, Journal of Structural Engineering, Aug. 2004, Vol. 130, No. 8, s. 1242-1251.
  • [6] Polak A., Blackwell K Modeling Tension in Reinforced Concrete Members Subjected to Bending and Axial Load, Journal of Structural Engineering, Sep. 1998, Vol. 124, No. 9, s. 1018-1024.
  • [7] Moehle J., et al., Anchorage Lengths for Straight Bars in Tension, ACI Structural Journal 1988, Vol. 88, No. 5, s. 414-422.
  • [8] Darwin D., et al., Evaluation of development length design expressions, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 747-754.
  • [9] Lackner R., Mang H., Scale Transition in Steel-Concrete Interaction, Journal of Engineering Mechanics, Vol. 129, No. 4, 2003, s. 393-402.
  • [10] RILEM/CEB/FIP, Recommendations on reinforcement steel for reinforced concrete, Revised edition of RC6 Bond test for reinforcement steel: (2). Pull-out test. CEB News, No. 73, May 1983.
  • [11] Cairns J., Plizzari G., Do we need a standard test for bond, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 259-267.
  • [12] CEB-FIP, Task Group Bond Models: Bond of reinforcement in concrete, biulletinlO, 2000.
  • [13] Russo G., Romanof., Cracking Response of RC Members subjected to Uniaxial Tension, Journal of Structural Engineering, Vol. 118, No. 5, May 1992, s. 1172-1190.
  • [14] Mirza S., Houde J., Study of Bond Stress-Slip Relationships in Reinforced Concrete, ACI Journal, Vol. 76, No. 1, Symposium Paper, January 1979, s. 19-46.
  • [15] Tanabe T., et al., Tension Stiffness Model for Cracked Reinforced Concrete, Journal of Structural Engineering, Vol. 117, N o. 3, March 1991, s. 715-732.
  • [16] Gupta A., Maestrini S., Tension-Stiffness Model For Reinforced Concrete Bars, Journal of Structural Engineering, Vol. 116, No. 2, February 1991, s. 769-790.
  • [17] Kwak H., Kim S., Bond-slip behavior under monotonie uniaxial loads, Engineering Structures, 2001, Vol. 23, s. 298-309.
  • [18] Nilson A.H., Internal Measurement of Bond Slip, ACI Journal, Vol. 69, No. 7, July 1972, s. 439-441.
  • [19] Youlin X., Experimental Study of Bond-Anchorage Properties for Deformed Bars in Concrete, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga, Oct. 1992, s. 1-9 to 1-17.
  • [20] Kankam Ch., Relationship of Bond Stress, Steel Stress, and Slip in Reinforced Concrete, Journal of Structural Engineering, Vol. 123, No. 1, January 1997, s. 79-85.
  • [21] Kankam Ch., A routine method for measuring bond stress, steel strain and slip in RC beams at service loads, Magazine of Concrete Research, Vol. 55, No. 3,2003, s. 85-93.
  • [22] Scott R., Beeby A., Long-term Tension Stiffening Effects In concrete, ACI Structural Journal, Vol. 102, No. 1,2005, s. 31-39.
  • [23] Jiang D., Shah S., Andonian A., Study of the Transfer of Tensile Forces by Bond, ACI Journal, May-June 1984, s. 251-258.
  • [24] Chan H., Cheung Y., Huang Y., Crack Analysis of Reinforced concrete Tension Members, Journal of Structural Engineering, Vol. 118, No. 8, August 1992, s. 2118-2132.
  • [25] Ngo D., Scordelis A., Finite element analysis of reinforced concrete beams, ACI Journal, 1967, Vol. 64, No. 3, s. 152-163.
  • [26] Lundgren K., Bond between bars and concrete. Part I: Modified model, Magazine of Concrete Research, Vol. 57, No. 7, 2005, s. 371-382.
  • [27] Ueda T., et al., Prediction of tension behavior of reinforced concrete members with bond model, Proc. Int. Conf. „Bond in Concrete - from research to standards”, Budapest 2002 s. 293-299.
  • [28] Cox J., Yu H., Radial Elastic Stiffness Associated with Bond between Steel Bars and Concrete, ACI Structural Journal, 2001, Vol. 98, No. 1, s. 16-26.
  • [29] Salem H., Maekawa K., Pre-and Post yield Finite Element method simulation of bond of ribbed Reinforcing Bars, Journal of Structural Engineering, 2004, Vol. 130, No. 4, s. 671-680.
  • [30] Monti G., Spacone E., Reinforced Concrete Fiber Beam Element with Bond-slip, Journal of Structural Engineering, 2000, Vol. 126, No. 6, s. 654-661.
  • [31] PN-B-03264: Konstrukcje betonowe, żelbetowe i sprężone. Obliczenia statyczne i projektowanie. Grudzień 2002.
  • [32] EN 1992-1-1, EC2: Design of concrete structures ‒ Part 1-1: General rules and rules for buildings, 2004.
  • [33] Pędziwiatr J., Styś D., Wybrane zagadnienia przyczepności stali do betonu na przykładzie belek zginanych, XLIX Konferencja Naukowa KILiW PAN i Komitetu Nauki PZITB, Warszawa-Krynica 2003, Tom. 3, s. 71-78.
  • [34] Maldaque I., Determination experimentale des lois moment courbures, Annales de l’Institut Tech du Batiment et des Travaux Publics, 1965, No. 209.
  • [35] Base G., Bond, and Control of Cracking in Reinforced Concrete, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 446-457.
  • [36] Yannopoulos P., Tassios T., Reinforced Concrete Axial Elements Analyzed under Monotonie and Cyclic Actions, ACI Structural Journal 1991, Vol. 88, N o .l January-February, s. 3-11.
  • [37] Creazza G., Di Marco R., Effects of Transverse Reinforcement on Tension Stiffening in Reinforcement on Tension Stiffening in Reinforced Concrete Elements Subjected to Bending and Axial Load, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga, Oct. 1992, s. 9-19, 9-26.
  • [38] Rizkalla S., Hwang L., Crack Prediction for Members in Uniaxial Tension, ACI Journal, 1984, s. 572-579.
  • [39] Romanof., Żingone G., Transverse Reinforcement Effect on Tension Stiffening of R.C. Members, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga, Oct. 1992, s. 9-27 to 9-36.
  • [40] Ouyang Ch., Shah S., Fracture Energy Approach for Predicting Cracking of Reinforced Concrete Tensile Members, ACI Structural Journal 1994, Vol. 91, No. 1, January-February, s. 69-78.
  • [41] Shah S., et all., Prediction of Cracking Response of Reinforced Concrete Tensile Members, Journal of Structural Engineering, 1997, Vol. 123, No. 1, s. 70-78.
  • [42] Beeby A., Scott R., Cracking and deformation of axially reinforced members subjected to pure tension, Magazine of Concrete Research, Vol. 57, No. 10,2005, s. 611-621.
  • [43] Gilbert R., Warner R., Tension stiffening in reinforced concrete slabs, Journal of Structural Division 1978, Vol. 104, No. 12, s. 1885-1900.
  • [44] Giuriani E., On the Effective Axial Stiffness of a Bar in Cracked Concrete, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 107-126.
  • [45] Elfgren L., Noghabai K., Tension of reinforced concrete prism. Bond properties of reinforcement bars embedded in concrete tie elements, Materials and Structures, Vol. 35, July 2002, s. 318-325.
  • [46] Lettow S., Mayer U., Eligehausen R., Contribution of concrete between cracks ‒ investigations on high strength and fiber reinforced high strength concrete, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 554-561.
  • [47] . Girard C., Bastien J., Finite Element Bond-Slip Model For Concrete Columns Under Cyclic Loading, Journal of Structural Engineering, 2002, Vol. 128, No. 12, s. 1502-1509.
  • [48] Molina M., et all., Evaluation of reinforced concrete structures with partial loss of concrete/steel bond, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 182-189.
  • [49] Jeppsson J., Thelandersson S., Behavior of RC beams with loss of bond at longitudinal reinforcement, Journal of Structural Engineering, Vol. 129, No. 10, 2003, s. 1376-1382.
  • [50] Szechinski M., Deformacje zginanych elementów żelbetowych obciążonych długotrwale, Pr. Nauk. Instytutu Budownictwa PWr., Seria monografie nr 30, Wrocław 1996.
  • [51] Abrishami H., Mitchell D., Influence of Splitting Cracks on Tension Stiffening, ACI Structural Journal 1996, Vol. 93, No. 6, s. 703-710.
  • [52] Torres LI., et al., Tension-Stiffening Model for Cracked Flexural Concrete Members, Journal of Structural Engineering, Vol. 130, No. 8,2004, s. 1242-1251.
  • [53] Darwin D., et al., Evaluation of development length design ,expressions, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 747-754.
  • Rozdział 4
  • [1] Pędziwiatr J., The new model for cracking analysis of tension reinforced concrete members based on the bond-slip relationships, Arch. Civ. Eng., 1996, Vol. 42, No. 1, s. 47-64.
  • [2] Otsuka K., Ozaka Y., Group effect on anchorage strength of deformed bars embedded in massive concrete block, Proc. Int. Conf. „Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.38-1.47.
  • [3] Jankowski L., Pędziwiatr J., Styś D., Wybrane zagadnienia związane z badaniem przyczepności betonu i stali, XVIII Sympozjum Mechaniki Eksperymentalnej Ciała Stałego PTMST, Jachranka 1998, s. 217-222.
  • [4] Base G., Bond, and Control of Cracking in Reinforced Concrete, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 446-447.
  • [5] Jiang D., Shah S., Andonian A., Study of the transfer of tensile Forces by Bond, ACI Journal 1984(3), s. 351-359.
  • [6] Goto Y., Cracks formed in concrete around deformed bars, Journal of ACI, Vol. 68, No. 4., April 1971, s. 244-251.
  • [7] Beeby A., Scott R., Cracking and deformation of axially reinforced members subjected to pure tension, Magazine of Concrete Research, Vol. 57, No. 10,2005, s. 611-621.
  • [8] Tassios T., Koroneos E., Local Bond-Slip Relationships by Means of the Moire Method, ACI Journal 1984(1), s. 27-34.
  • [9] Pędziwiatr J., Minch M., Bond and cracking phenomena, AMCM 2002, Kraków 2002, s. 168-173.
  • [10] Maldaque I., Determination experimentale des lois moment courbures, Annales de l’Institut Tech du Batiment et des Travaux Publics, 1965, No. 209.
  • [11] Pędziwiatr J., Styś D., Wybrane zagadnienia przyczepności stali do betonu na przykładzie belek zginanych, XLIX Konferencja Naukowa KILiW PAN i Komitetu Nauki PZITB, Warszawa-Krynica 2003, Tom. 3, s. 71-78.
  • [12] Chan H., Cheung Y., Huang Y., Crack Analysis of Reinforced concrete Tension Members, Journal of Structural Engineering, Vol. 118, No. 8, August 1992, s. 2118-2132.
  • [13] Pędziwiatr J., Minch M., Bond-slip model calculations the width of crack under cyclic loading, AMCM, Łódź 1996, s. 305-310.
  • [14] Pędziwiatr J., The influence of cyclic loading on the bond between concrete and steel bars, Arch. Of Civ. Mech. Eng., 2005, Vol. 5, No. 3, s. 43-58.
  • [15] Bażant Z., Theory of Creep and Shrinkage in Concrete Structures: A precis of Recent Developments, Pergamon Press, London 1975.
  • [16] Bażant Z., Approximate Relaxation Function for Concrete, Journal of the Structural Division, 1979, No. 12.
  • [17] Bażant Z., Panula L., Practical Prediction of Time-Dependent Deformation of Concrete, Materiaux et Constructions, No. 65, Vol. 11.
  • Rozdział 5
  • [1] Jankowski L., Pędziwiatr J., Styś D., Wybrane zagadnienia związane z badaniem przyczepności betonu i stali, XVIII Sympozjum Mechaniki Eksperymentalnej Ciała Stałego, PTMTS, Jachranka 1998, s. 217-222.'
  • [2] Jankowski L., Pędziwiatr J., Styś D., Analiza przyczepności w mimośrodowo rozciąganych elementach żelbetowych, VII Krajowa Konferencja Mechaniki Pękania, Kielce 1999, s. 169-176.
  • [3] Pędziwiatr J., Cracking behavior of eccentric tension members, Proceedings of Analytical Models and New Concepts in Concrete Structures, Wroclaw 1999, s. 223-228.
  • [4] Pędziwiatr J., Styś D., Hola J., Study of the transfer of tensile forces by bond in eccentric reinforced concrete members, 13th European Conference on Fracture, San Sebastian 2000, CD-ROM.
  • [5] Nielsen C., Bićanić N., Radial fictitious cracking of thick-walled cylinder due to bar pull-out, Magazine of Concrete Research, Vol. 54, No. 3, 2002, s. 215-221.
  • [6] Lundgren K., Magnusson J., Three-Dimensional Modeling of Anchorage Zones in RC, Journal of Engineering Mechanics, Vol. 127, No. 7, 2001, s. 693-699.
  • [7] Jankowski L., Pędziwiatr J., Styś D., Analiza zjawisk towarzyszących zarysowaniu elementów żelbetowych zginanych i mimośrodowo rozciąganych, VIII Krajowa Konferencja Mechaniki Pękania, Kielce 2001, s. 175-182.
  • [8] Pędziwiatr J., Styś D., Study of the transfer of tensile forces by bond in reinforced concrete members, Concrete and Concrete Structures ‒ 3rd International Conference, Zilina 2002, s. 259-264.
  • [9] Tepfers, R. Cracking of Concrete Cover Along Anchored Deformed Reinforcing Bars, Magazine of Concrete Research, Vol. 31, No. 106, 1979, s. 3-12.
  • [10] Cairns J., Jones K., An Evaluation of the Bond-Splitting Action of Ribbed Bars, ACI Materials Journal, Vol. 93, No. 1, January-February 1996, s. 10-19.
  • [11] Tepfers, R., Olsson P., Ring Tests for Evaluation of Bond Properties of Reinforcing Bars, Proc. Int. Conf. “Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.89-1.99.
  • [12] Pędziwiatr J., Minch M., Metoda szacowania wpływu obciążeń cyklicznych na zmiany szerokości rozwarcia rys, XLIII Konferencja Naukowa KILiW PAN i Komitetu Nauki PZITB, Krynica 1997, s. 139-146.
  • [13] Pędziwiatr J., The influence of cyclic loading on the bond between concrete and steel bars, Arch. Of Civ. Mech. Eng., 2005, Vol. 5, No. 3, s. 43-58.
  • [14] Pędziwiatr J., Minch M., Bond-slip model calculations the width of crack under cyclic loading, Proceedings of Analytical Models and New Concepts in Concrete Structures, Łódź 1996, s. 305-310.
  • [15] Gambarowa P., Rosati P,. Sharif O., Bond and Splitting in Reinforced Concrete, Proceedings, Proc. Int. Conf. “Bond in Concrete: from Research to Practice”, Riga 1992, s. 1.48 -1 .5 7 .
  • [16] Pędziwiatr J., Styś D., Wybrane zagadnienia przyczepności stali do betom na przykładzie belek zginanych, XLIX Konferencja Naukowa KILiW PAN i Komitetu Nauki PZITB, Krynica 2003, s. 71-78.
  • Rozdział 6
  • [1] Darwin D., et al., Evaluation of development length design expressions, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 747-754.
  • [2] ACI 318-02, Building Code Requirements for Structural Concrete and Commentary, 2002.
  • [3] Bond in Concrete ‒ from research to standards, Proceedings, Budapest 2002.
  • [4] Cairns J., Plizzari G., Do we need a standard test for bond, Proc. Int. Conf. „Bond in Concrete ‒ from research to standards”, Budapest 2002, s. 259-267.
  • [5] EN 1992-1-1, EC2: Design of concrete structures ‒ Part 1-1: General rules and rules for buildings, 2004.
  • [6] ACI 318-02, Building Code Requirements for Structural Concrete and Commentary, 2002.
  • [7] Elfgren L., Noghabai K., Tension of reinforced concrete prism. Bond properties of reinforcement bars embedded in concrete tie elements, Summary of a RILEM round-robin investigation arranged by TC 147-FMB „Fracture Mechanics to Anchorage and Bond”, Materials and Structures, Vol. 35, July 2002, s. 318-325.
  • [8] Base G., Bond, and Control of Cracking in Reinforced Concrete, Proceedings, International Conference Bond in Concrete, Applied Science Publishers, London 1982, s. 446-447.
  • [9] Beeby A., Scott R., Cracking and deformation of axially reinforced members subjected to pure tension, Magazine of Concrete Research, Vol. 57, No. 10, 2005, s. 611-621.
  • [10] Szechiński M., Deformacje zginanych elementów żelbetowych obciążonych długotrwale, Pr. Nauk. Instytutu Budownictwa PWr., Seria monografie nr 30, Wroclaw 1996.
  • [11] Lackner R., Mang H., Scale Transaction in Steel-Concrete Interaction. I: Model, Journal of Engineering Mechanics, Vol. 129, No. 4, 2003, s. 393-402.
  • [12] Komentarz naukowy do PN-B-03264:2002, Tom 2, ITB, Warszawa 2003.
  • [13] Jiang D., Shah S., Andonian A., Study of the transfer of tensile Forces by Bond, ACI Journal 1984(3), s. 351-359.
Uwagi
Bibliografia przy rozdziałach
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0004-0126
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.