PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Loss analysis of single mode telecommunication fiber thermally-diffused core areas.

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, diffusion processes in thermally connected cylindrical fibers with weakly guiding and circular cross-section, that is, telecommunication fibers, have been presented. There have been discussed diffusion distributions of the core dopant of fibers spliced at T 2000 deg. C. Gaussian approximations of the core dopant concentration distribution and refractive index in the connecting area of single mode telecommunication fibers have been presented. Theoretical analysis of propagation and loss characteristics for thermally-diffused expanded core (TEC) of single mode telecommunication fibers has been performed, as well. Consistence of theoretical calculation results with experimental data, achieved on the basis of connecting telecommunication fibers with significantly different parameters, has been proved.
Czasopismo
Rocznik
Strony
279--294
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Institute of Telecommunication, University of Technology and Agriculture, Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] RATUSZEK M., Analysis of reflectometric measurement losses of spliced single mode telecommunication fibers with significantly different parameters, Optica Applicata 35(2), 2005, pp. 347–63.
  • [2] OHTERA Y., HANAIZUMI O., KAWAKAMI S., Numerical analysis of eigenmodes and splice losses of thermally diffused expanded core fibers, Journal of Lightwave Technology 17(12), 1999, pp. 2675–82.
  • [3] RATUSZEK M., ZAKRZEWSKI Z., MAJEWSKI J., RATUSZEK M.J., Process optimisation of the arc fusion splicing different types of single mode telecommunication fibres, Opto-Electronics Review 8(2), 2000, pp. 161–70.
  • [4] MARCUSE D., Loss analysis of single-mode fiber splices, Bell System Technical Journal 56(5), 1977, pp. 703–18.
  • [5] SHIRAISHI K., AIZAWA Y., KAWAKAMI S., Beam expanding fiber using thermal diffusion of the dopant, Journal of Lightwave Technology 8(8), 1990, pp. 1151–61.
  • [6] JOST W., Diffusion in Solids, Liquids, Gases, Academic Press, New York 1960.
  • [7] MAJEWSKI A., Teoria i projektowanie światłowodów, WNT, Warszawa 1991 (in Polish).
  • [8] Recommendation ITU-T G.652, Characteristics of a single-mode optical fibre cable, 2003.
  • [9] Recommendation ITU-T G.653, Characteristics of dispersion-shifted single-mode optical fibre and cable, 1997.
  • [10] Recommendation ITU-T G.655, Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable, 2003.
  • [11] KURTZ A.D., YEE R., Diffusion of boron into silicon, Journal of Applied Physics 31(2), 1960, pp. 303–5.
  • [12] PRUSSIN S., Generation and distribution of dislocations by solute diffusion, Journal of Applied Physics 32(10), 1961, pp. 1876–81.
  • [13] MARCUSE D., Gaussian approximation of the fundamental modes of graded-index fibers, Journal of the Optical Society of America 68(1), 1978, pp. 103–9.
  • [14] CHANCLOU P., RAMANITRA H., GRAVEY P., THUAL M., Design and performance of expanded mode fiber using microoptics, Journal of Lightwave Technology 20(5), 2002, pp. 836–42.
  • [15] KIHARA M., MATSUMOTO M., HAIBARA T., TOMITA S., Characteristics of thermally expanded core fiber, Journal of Lightwave Technology 14(10), 1996, pp. 2209–14.
  • [16] SNYDER A.W., Optical Waveguide Theory, Chapman and Hall, London 1983.
  • [17] RATUSZEK M., MAJEWSKI J., ZAKRZEWSKI Z., ZALEWSKI J., Examination of spliced telecommunication fibers of the NZDS-SMF type adjusted to wavelength division multiplexing, Optica Applicata 29(1–2), 1999, pp. 73–85.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0004-0099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.