PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effective complex permittivity of two-phase random composite media: a test of the two exponent phenomenological percolation equation.

Identyfikatory
Warianty tytułu
Konferencja
APTADAM 2007, III International Conference on Advances in Processing Testing and Application of Dielectric Materials., September, 26-28, 2007 Wrocław, Poland
Języki publikacji
EN
Abstrakty
EN
The nature of percolation in continuum media inhomogeneous media is a current topic of debate. In this work, Monte Carlo and finite element simulations of the effective complex permittivity, e- e -ye, of two phase random composite media are analyzed using the two exponent phenomenological percolation equation (TEPPE) due to McLachlan. The continuum-percolation system consists of two-dimensional equilibrium distributions of randomly distributed monodisperse circular and partially penetrable disks (or parallel, infinitely long, identical, partially penetrable circular cylinders) throughout a host matrix. The study is performed on a set of calculations, covering wide ranges of various parameters including the intrinsic constituent permittivity, the surface fraction, and the degree of impenetrability. In our analysis, we first determine the parameters that characterize the critical behavior at the percolation threshold. Our data suggest that the phenomenological TEPPE does not fit the simulation data well over the entire range of surface fraction, and whatever the degree of impenetrability considered. This is attributed, in part, to the fact that the effective medium approximation (restricted to dipolar interactions only) ignores the local field fluctuations explicitly. Moreover, the mixtures exhibit clustering in equilibrium which is not conceptually incorporated in the TEPPE, i.e. the inclusions form cluster with a percolating spongelike topology accompanied by strongly dependent shape of the radial distribution function on the degree of impenetrability. It is argued that further efforts are still needed to fully grasp the numerically (and experimentally) observed features of the effective properties of dielectric heterostructures.
Twórcy
autor
  • Faculty of Mechanics and Mathematics, Sumy State University, Sumy, Ukraine
Bibliografia
  • [1] C. Brosseau, J. Phys. D 39, '277, 2006; C. Brosseau and A. Beroual, Prog. Mater. Sci. 48, 373, 2003.
  • [2] See the articles, in Proceedings of the Third International Conference on Electrical Transport and Optical Properties in Inhomogeneous Media, Physica A 207, 1, 1994.
  • [3] M. Sahimi, Applications of Percolation Theory, Taylor & Francis, London 1994.
  • [4] S. Torquato, Random Heterogeneous Materials: Micro-structure and Macroscopic Properties, Springer, New York 2002.
  • [5] D.J. Bergman and D. Stroud, in Solid State Physics, Advances in Research and Applications, edited by H. Ehrenreich and D. Turnbull, Academic, New York 1992, Vol. 46, p. 147.
  • [6] A.H. Sihvola, Electromagnetic Mixing Formulas and Applications, IEE Publishing, London 1999.
  • [7] V. Myroshnychenko and C. Brosseau (in press).
  • [8] D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London 1992.
  • [9] J.P. Clerc, G. Giraud, J.M. Laugier, and J.M. Luck. Adv. Phys. 39, 1, 1990.
  • [10] Ce-Wen Nan, Prog. Maler. Sci. 37, 1. 1993.
  • [11] See e.g., S. Feng. B.I. Halperin, and P.N. Sen, Phys. Rev. B 35, 197, 1987.
  • [12] I. Balberg, Phys. Rev. Lett. 59, 1305. 1987.
  • [13] D.S. McLachlan, W. Heiss, C. Chiteme and J. Wu, Phys. Rev. B, 58, 13558 (1998); C. Chiteme and D.S. McLachlan. Phys. Rev. B 67, 024206. 2003.
  • [14] P. Sheng, E.K. Sichel.and J. 1. Gittleman. Phys. Rev. Lett. 40, 1197. 1978.
  • [15] V. Myroshnychenko and C. Brosseau, Phys. Rev. E 71, 016701, 2005.
  • [16] V. Myroshnychenko and C. Brosseau, J. Appi. Phys. 97, 044101,2005.
  • [17] M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Clarendon. Oxford 1987.
  • [18] S.B. Lee and S. Torquato. J. Chem. Phys. 89, 6427, 1988.
  • [19] S. Feng, B.I. Halperin, and P.N. Sen. Phys. Rev. B 35, 197, 1987.
  • [20] I. Balberg, Phys. Rev. Lett. 59, 1305, 1987.
  • [21] I. Balberg, Phys. Rev. B 57, 13351, 1998.
  • [22] C. Grimaldi and I. Balberg, Phys. Rev. Lett. 96. 066602, 2006.
  • [23] S. Vionnct-Menot, C. Grimaldi. T. Macder, S. Strässler, and P. Ryser, Phys. Rev. B 71. 064201, 2005.
  • [24] I.A. Youngs, J. Phys. D 35, 3127, 2002.
  • [25] E. Tuncer, S.M. Gubanski. and B. Nettelblad, J. Appi. Phys. 89, 8092, 2001.
  • [26] H. Cheng and S. Torquato. Phys. Rev. B 56, 8060, 1997.
  • [27] C. Brosseau, P. QuefTelec. and P. Talbot, J. Appi. Phys. 89, 4532, (2001); C. Brosseau, J. Appi. Phys. 90. 3197, 2002.
  • [28] J. Yoo, N. Kikuchi and J.L. Volakis, IEEE Trans. Magn. 36, 574, 2000.
  • [29] A. Krivda, S.A. Page, G. Meier, S. Wright, Proceedings of the 2004 IEEE International Conference on Solid Dielectrics, Toulouse. France, 474.
  • [30] A. Mejdoubi and C. Brosseau, J. Appi. Phys. 100. 094103, 2006.
  • [31] A. Drost, P. Steiner, H. Moser, and W. Lang, Sens. Mater. 7, 111, 1995.
  • [32] J.D. Chung and M. Kaviany, Int. J. Heat Mass Transfer 43,521,2000.
  • [33] G. Benedetto, L. Boarino, and R. Spagnolo, Appi. Phys.A: Mater. Sci. Process 155, 64, 1997.
  • [34] G. Gesele. J. Linsmeir, V. Drach, J. Fricke. and R. Arcns-Fischer, J. Phys. D 30. 2911. 1997.
  • [35] T.M. Kusay. Rev. Sei. Instrum. 63. 468. 1992.
  • [36] A. Delan, M. Rennau, S.E. Schulz, and T. Gessner, Microlectron. Eng. 70. 280. 2003.
  • [37] F.P. Bull and F.H. Stillinger. J. Chem. Phys. 39. 1911, 1963.
  • [38] W.S. Steele, J. Phys. Chem. 69, 3446, 1965.
  • [39] S. McLaughin, Annu. Rev. Biophys. Biophys. Chem. 18, 113, 1989.
  • [40] C.A. Murray and D. H. van Winkle, Phys. Rev. A 34, 562, 1986.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW9-0004-0040
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.