PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ANFIS and neural network techniques for non-parametric modelling of a twin rotor system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interest in system identification especially for nonlinear systems has significantly increased in the past few decades. Soft-computing methods which concern computation in an imprecise environment have gained significant attention amid widening studies of explicit mathematical modelling. In this research, three different soft computing techniques that are multi-layered perceptron neural network using Levenberg-Marquardt (LM), Elman recurrent neural network and adaptive neuro-fuzzy inference system (ANFIS) network are deployed and used for modelling a twin rotor multi-input multi-output system (TRMS). The system is perceived as a challenging engineering problem due to its high nonlinearity, cross coupling between horizontal and vertical axes and inaccessibility of some of its states and outputs for measurements. Accurate modelling of the system is thus required so as to achieve satisfactory control objectives. It is demonstrated experimentally that soft computing methods can be effectively used for modelling the system with highly accurate results. The accuracy of the modelling results is demonstrated through validation tests including training and test validation and correlation tests.
Czasopismo
Rocznik
Strony
13--31
Opis fizyczny
Bibliogr. 53 poz., tab., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Astrom K.J., Eykhoff P., System identification - A survey, Automatica, 1971,7(2), 123-162.
  • [2] Elanayar V.T.S., Shin Y.C., Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems, IEEE Transactions on Neural Networks, 1994, 5(4), 594-603.
  • [3] Zadeh L.A., Fuzzy logic, neural network and soft computing, Communication of the ACM, 1994a, 37(3), 77-84.
  • [4] Zadeh L.A., Soft computing and fuzzy logic, IEEE Software, 1994b, 11(6), 48-56.
  • [5] Hornik K., Stinchcombe M., White H., Multilayer feed forward networks are universal approximators, Neural Networks, 1989, 2(5), 359-366.
  • [6] Rajpal P.S., Shishodia K.S., Sekhon G.S., An artificial neural network for modeling reliability, availability and maintainability of a repairable system, Reliability Engineering & System Safety, 2006, 91(7), 809-819.
  • [7] Miller N.A., Kunz D.L., A comparison of main rotor smoothing adjustments using linear and neural network algorithms, Journal of Sound and Vibration, 2008, 311(3-5), 991-1003.
  • [8] Putro I.E., Budiyono A., Yoon K.J., Kim D.H., Modeling of unmanned small scale rotorcraft based on Neural Network identification, IEEE International Conference on Robotics and Biomimetics (ROBIO 2008) Bangkok, Thailand, 22-25 February 2009, 1938-1943.
  • [9] Baldi P., Hornik K., Neural networks and principal component analysis: Learning from examples without local minima, Neural Networks, 1989, 2(1), 53-58.
  • [10] Long N., Zhang F., Novel Newton's learning algorithm of neural networks, Journal of Systems Engineering and Electronics, 2006, 17(2), 450-454.
  • [11] Rahideh A., Shaheed M.H., Neural network-based modelling of a two-degrees-of-freedom twin rotor multiple input, multi-pie output system using conjugate gradient learning algorithms, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2008, 222(6), 757-771.
  • [12] Toha S.F., Tokhi M.O., MLP and Elman recurrent neural network modelling for the TRMS, 7th IEEE International Conference on Cybernetic Intelligent Systems, (CIS 2008), London, U.K., 9-10 September 2008, 1-6.
  • [13] Wilamowski B.M., Iplikci S., Kaynak O., Efe M.O., An algorithm for fast convergence in training neural networks, International Joint Conference on Neural Networks (IJCNN01), Washington, DC, USA, 15-19 July 2001, 1778-1782.
  • [14] Cheol-Taek K., Ju-Jang L., Training Two-Layered Feedforward Networks With Variable Projection Method, IEEE Transactions on Neural Networks, 2008, 19(2), 371-375.
  • [15] Haykin S., Neural networks and learning machines, Third ed. (New Jersey, Pearson International Edition, 2009).
  • [16] Juang J.-G., Chiou H.-K., Chien L.-H., Analysis and comparison of aircraft landing control using recurrent neural networks and genetic algorithms approaches, Neurocomputing, 2008, 71(16-18), 3224-3238.
  • [17] Elman J., Finding Structure in Time, Cognitive Science, 1990, 14(2), 179-211.
  • [18] Gonzalez-Olvera M.A., Yu T., Black-Box Identification of a Class of Nonlinear Systems by a Recurrent Neurofuzzy Network, IEEE Transactions on Neural Networks, 2010, 21(4), 672-679.
  • [19] Al Seyab R.K., Cao Y., Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation, Journal of Process Control, 2008, 18(6), 568-581.
  • [20] Becerra V.M., Garces F.R., Nasuto S.J., Holderbaum W., An efficient parameterization of dynamic neural networks for nonlinear system identification, IEEE Transactions on Neural Networks, 2005, 16(4), 983-988.
  • [21] Hsu C.F., Lin CM., Chen T.Y., Neural-network-identification-based adaptive control of wing rock motions, IEE Proceedings on Control Theory and Applications, 2005, 152(1), 65-71.
  • [22] Jang J.S.R., ANFIS: adaptive-network-based fuzzy inference system, Systems, Man and Cybernetics, IEEE Transactions on, 1993, 23(3), 665-685.
  • [23] Rajasekaran S., Vijayalakshmi Pai G.A., Neural Networks, Fuzzy Logic, and Genetic Algorithms, Synthesis and Applications Prentice Hall of India, Private Limited, 2005.
  • [24] Bawane N., Kothari A.G., Kothari D.P., ANFIS based HVDC control and fault identification of HVDC converter, HAIT Journal of Science and Engineering B, 2005, 2(5-6), 673-689.
  • [25] Negnevitsky M., Artificial intelligence: a guide to intelligent systems, Second ed, Addison Wesley, Pearson education, 2005.
  • [26] Zounemat-Kermani M., Teshnehlab M., Using adaptive neuro-fuzzy inference system for hydrological time series prediction, Applied Soft Computing, 2008, 8, 928-936.
  • [27] Alavandar S., Nigam M.J., Adaptive neuro-fuzzy inference system based control of six DOF robot manipulator, Journal of Engineering Science and Technology Review, 2008, 1, 106-111.
  • [28] Civicioglu P., Using uncorrupted neighborhoods of the pixels for impulsive noise suppression with ANFIS, IEEE Transactions On Image Processing, March 2007, 16(3), 759-773.
  • [29] Denai M.A., Palis F., Zeghbib A., Modeling and control of non-linear systems using soft computing techniques, Applied Soft Computing, 2007, 7, 728-738.
  • [30] Ahmad S., Shaheed M., Chipperfield A., Tokhi M., Nonlinear modelling of a one-degree-of-freedom twin-rotor multi-input multi-output system using radial basis function networks, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2002, 216(4), 197-208.
  • [31] Aldebrez F.M., Mat Darus I.Z., Tokhi M.O., Dynamic modelling of a twin rotor system in hovering position, First International Symposium on Control, Communications and Signal Processing, Hammamet, Tunisia, 2004, 823-826.
  • [32] Shaheed M.H., Feedforward neural network based nonlinear dynamic modelling of a TRMS using RPROP algorithm, International Journal on Aircraft Engineering and Aerospace Technology, 2005, 77(1), 13-22.
  • [33] Rahideh A., Shaheed M.H., Huijberts H.J.C., Dynamic modelling of a TRMS using analytical and empirical approaches, Control Engineering Practice, 2008, 16(3), 241-259.
  • [34] Feedback Instrument Ltd. Twin Rotor MIMO System manual 33-007-0. (Sussex, UK, 1996).
  • [35] Hinton G.E., How neural networks learn from experience, Scientific American, September 1992, 267(3), 145-151.
  • [36] Rumelhart D.E., Hinton G.E., Williams R.J., Learning representation by back propagation errors, Nature, 1986, 323, 533-536.
  • [37] Harney L.G.C., Comments on; Can back propagation error surface not have local minima?, IEEE Transactions on Neural Networks, 1994, 5(5), 844-845.
  • [38] Beale R., Jackson T., Neural computing an introduction Bristol, U.K., Institute of Physics, 1990.
  • [39] Lean Y., Shouyang W., Lai K.K., An integrated data preparation scheme for neural network data analysis, IEEE Transactions on Knowledge and Data Engineering, 2006, 18(2) 217-230.
  • [40] Hagan M.T., Menhaj M.B., Training feed forward network with the Marquardt algorithm, Neural Networks, IEEE Transactions on, 1994, 5(6), 989-993.
  • [41] Linkens D.A., Nyongesa H.O., Learning systems in intelligent control: an appraisal of fuzzy, neural and genetic algorithm control applications, Control Theory and Applications, IEE Proceedings, 1996, 143(4), 367-386.
  • [42] Moody J., Darken C.J., Fast learning in networks of locally-tuned processing units, Neural Computation, 1989,1, 281-294.
  • [43] Demuth H., Beale M., Hagan M., Neural network toolbox 6.0 user's guide, The Mathworks, 2008.
  • [44] Sastry P.S., Santharam G., Unnikrishnan K.P., Memory neuron networks for identification and control of dynamical systems, Neural Networks, IEEE Transactions on, 1994,5(2), 306-319.
  • [45] Yen J., Wang L., Gillespie C.W., Improving the interpretability of TSK fuzzy models by combining global learning and local learning, IEEE Transactions on Fuzzy Syst November 1998, 6(4), 530-537.
  • [46] Kosko B., Fuzzy systems as universal approximators, IEEE Transactions on Computers, November 1994, 43(11).
  • [47] Hamidian D., Seyedpoor S.M., Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization, Applied Mathematical Modelling, 2010, 34(6), 1574-1585.
  • [48] Ljung L., System identification: theory for the user, Englewood Cliffs, New Jersey, Prentice-Hall, 1999.
  • [49] Söderström T., Stoica P., System Identification, New Jersey, Prentice-Hall, 1988.
  • [50] Shaheed M.H., Neural and genetic modelling, control and real-time finite element simulation of flexible manipulator, The University of Sheffield, U.K., 2000.
  • [51] Box G.E.P., Jenkins G.M., Time series analysis: Forecasting and control, San Francisco, Holden-Day, 1976.
  • [52] Billings S.A., Voon W.S.F., Correlation based model validity tests for non-linear models, International Journal of Control, 1986, 44(1), 235-244.
  • [53] Behera L., Kumar S., Patnaik A., On adaptive learning rate that guarantees convergence in feedforward networks, IEEE Transactions on Neural Networks, 2006, 17(5), 1116-1125.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0027-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.