PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rapid design of a hydraulic damper valve system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes an analytical tool that supports the design process of a disc spring valve system used in hydraulic car dampers. The proposed analytical tool obtains a key design characteristic of a valve, which is the flow rate and the corresponding maximum stress level in the stack of plates. The tool is prepared based on the cases produced by a first-principle model using a finite element approach. The finite element model was calibrated based on experimental results to provide accurate results in the entire range of input parameters.
Rocznik
Strony
45--56
Opis fizyczny
Bibliogr. 10 poz., tab., rys.
Twórcy
autor
autor
autor
autor
  • Institute of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology
Bibliografia
  • 1. van Kasteel R. Cheng-guo W., Lixin Q, Lin-zhao L. and Weng-zhang Z.: A new shock absorber model with an application in vehicle dynamics studies. In: 2003 SAE International Truck and Bus Meeting and Exhibition, Fort Worth, Texas (2003).
  • 2. Czop, P., Slawik, D., Sliwa, P., Wszolek, G.: Circular plater theory applied to modeling of intake valves used in shock absorbers. Journal of Achievements in Materials and Manufacturing Engineering 33(2), 173–180 (2009).
  • 3. Young, W.C.: Roark’s formulas for stress and strain. McGraw-Hill, New York (2003).
  • 4. Dixon, J.C.: The shock absorber handbook. Wiley, England (2007).
  • 5. Socie, D.: Multiaxial Fatigue Damage Models. ASME Journal of Engineering Materials and Technology 109, 293-298 (1987).
  • 6. Czop, P., Slawik, D., Sliwa, P.: Static validation of a model of a disc valve system used in shock absorbers. International Journal of Vehicle Design 53(4), 317–342 (2010).
  • 7. Burczynski, T., Skrobol, A.: Coupled evolutionary algorithm and artificial neural network in defects identification. In: Bathe, K.J. (ed.) Third MIT Conf. On Computational Fluid and Solid Mechanics, pp. 122–1226 (2005).
  • 8. Piatkowski, G., Ziemianski, L.: Neural network identification of a circular hole in the rectangular plate. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 778–783. Physica-Verlag Springer, Heidelberg (2003).
  • 9. Burczynski, T., Orantek, P., Skrobol, A.: Fuzzy-neural and evolutionary computation in identification of defect. Journal of Theoretical and Applied Mechanics 42(3), 445–460 (2004).
  • 10. Math-Works Inc., ‘Matlab-Simulink documentation’, 2011, http://www.mathworks.com/help/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0024-0017
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.