PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

CO2 reactive absorption from flue gases into aqueous ammonia solutions: The NH3 slippage effect

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Future deployment of NH3-based CO2 capture technology into coal-fired power plants will shift unwanted emissions from those currently comprising SO2, NOx- and particulate matter towards those comprising NH3. This is due to volatility of ammonia. Therefore, the current paper aims at understanding of NH3 slippage to flue gases from the NH3-based CO2 capture process and at identifying the opportunities to limit this unwanted slippage. The paper presents experimental and 2D modeling based analysis of CO2 reactive absorption from flue gases into aqueous ammonia solutions in a falling film reactor. The results enable one to characterise hydrodynamics of the falling film reactor, to analyse the effect of pH, pressure and temperature on CO2 absorption and NH3 slippage and to explain the role of migrative transport of ionic species in total mass transport. It was found that NH3 slippage to the gaseous phase can be limited by alleviated operating temperatures, optimised pH, increased pressure and large CO2 absorption fluxes which force negative enhancement of NH3 mass transfer [16]. The NH3 slippage under CO2 capture conditions and under air stripping conditions is illustrated by experimental and simulation data. Finally, main approaches used for the integration of CCS systems into power plants are expounded.
Rocznik
Strony
5--19
Opis fizyczny
Bibliogr.34 poz., rys., tab.
Twórcy
  • Faculty of Chemistry, Division of Chemical and Biochemical Processes, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, Wrocław, Poland, wojciech.budzianowski@pwr.wroc.pl
Bibliografia
  • 1. Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Van Dorland, R., Changes in atmospheric constituents and in radiative forcing (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, , University Press, Cambridge;
  • 2. Florides, G.A., Christodoulides, P., Global warming and carbon dioxide through sciences (Review) (2009) Environ. Int., 35, p. 390;
  • 3. Olajire, A.A., (2010) Energy, 35, p. 2610;
  • 4. Puxty, G., Rowland, R., Attalla, M., (2010) Chem. Eng. Sci., 65, p. 915;
  • 5. Pacheco, M.A., Rochelle, G.T., (1998) Ind. Eng. Chem. Res., 37, p. 4107;
  • 6. Pinsent, B.R.W., Pearson, L., Roughton, F.J.W., (1956) Transactions of the Faraday Society, 52, p. 1512;
  • 7. Budzlanowski, W.M., Koziol, A., (1999) Chem. Proc. Eng., 20, p. 485;
  • 8. Mani, F., Peruzzini, M., Stoppioni, P., CO 2 absorption by aqueous NH 3 solutions: Speciation of ammonium carbamate, bicarbonate and carbonate by a 13C NMR study (2006) Green Chemistry, 8 (11), pp. 995-1000., DOI 10.1039/b602051h;
  • 9. Zarzycki, R., Diffusive methods in the description of environmental processes - historical overview (2010) Modern Achievements in the Protection of Atmospheric Air, pp. 407-410., A. Musialik-Piotrowska, J.D. Rutkowski (Eds.), Polskie Zrzeszenie Inzynierów i Techników Sanitarnych, (in Polish);
  • 10. Budzianowski, W.M., (2009) Rynek Energii, 83 (4), p. 21;
  • 11. Greer, T., Bedelbayev, A., Igreja, J.M., Gomes, J.F., Lie, B., (2010) Environ. Technol., 31 (1), p. 107;
  • 12. Yeh, J.T., Resnik, K.P., Rygle, K., Pennline, H.W., (2005) Fuel Process. Technol., 86, p. 1533;
  • 13. Gal, E., (2006) Ultra Cleaning Combustion Gas Including the Removal of CO 2, , Patent No. WO2006022885;
  • 14. Pellegrini, G., Strube, R., Manfrida, G., (2010) Energy, 35, p. 851;
  • 15. Liu, J., Wang, S., Zhao, B., Tong, H., Chen, C., (2009) Energy Proc., 1, p. 933;
  • 16. Budzianowski, W.M., Koziol, A., (2005) Chem. Eng. Res. Des., 83, p. 196;
  • 17. Koornneef, J., Ramirez, A., Van Harmelen, T., Van Horssen, A., Turkenburg, W., Faaij, A., (2010) Atmos. Environ., 44, p. 1369;
  • 18. Kozak, F., Petig, A., Morris, E., Rhudy, R., Thimsen, D., (2009) Energy Proc., 1, p. 1419;
  • 19. Mathias, P.M., Reddy, S., O'Connel, J.P., (2009) Energy Proc., 1, p. 1227;
  • 20. Huang, H., Xiao, X., Yan, B., (2009) Desalin. Water Treatment, 8, p. 109;
  • 21. Sun, B.C., Wang, X.M., Chen, J.M., Chu, G.W., Chen, J.F., Shao, L., (2009) Ind. Eng. Chem. Res., 48, p. 11175;
  • 22. Kothandaraman, A., Nord, L., Bolland, O., Herzog, H.J., Mcrae, G.J., (2009) Energy Proc., 1, p. 1373;
  • 23. Budzianowski, W.M., Koziol, A., (2001) Chem. Proc Eng., 22, p. 301;
  • 24. Budzianowski, W.M., Koziol, A., (2000) Chem. Proc. Eng., 21, p. 741;
  • 25. Budzianowski, W.M., (2010) Rynek Energii, 88 (3), p. 151;
  • 26. Romeo, L.M., Espatolero, S., Bolea, I., (2008) Int. J. Greenh. Gas Con., 2, p. 563;
  • 27. Budzianowski, W.M., Miller, R., (2008) Environ. Prot. Eng., 34 (4), p. 17;
  • 28. Budzianowski, W.M., Miller, R., (2009) Int. J. Chem. React. Eng., 7, pp. A20;
  • 29. Budzianowski, W.M., Miller, R., (2008) Can. J. Chem. Eng., 86, p. 778;
  • 30. Budzianowski, W.M., Miller, R., (2009) Chem. Proc. Eng., 30, p. 149;
  • 31. Budzianowski, W.M., (2010) Int. J. Hydrogen Energ., 35, p. 7454;
  • 32. Budzianowski, W.M., (2009) Rynek Energii, 82 (3), p. 59;
  • 33. Gai, K., Knop, F., Trzepierczynska, I., (2009) Environ. Prot. Eng., 35 (4), p. 73;
  • 34. Valdez-Vazquez, I., Poggi-Varaldo, H.M., (2009) Renew. Sust. Energ. Rev., 13 (5), p. 1000
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0019-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.