PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the phytoremediation efficacy of boron-contaminated waters by Salvinia natans

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Local excesses of acceptable concentrations of boron in the aquatic environment may have negative impact on aquatic ecosystems, thus posing potential health hazards to humans and animals. The chemical methods commonly used for the treatment of surface waters may be successfully replaced by phytoremediation processes. Phytoremediation consists in accumulation of the contaminants in biomass, thus bringing the aquatic environment to conditions acceptable from the standpoint of legal regulations. Salvinia natans is an established bioaccumulator of metals from aquatic environments. The goal of this study was to verify the efficacy of the test species (Salvinia natans) in bioaccumulation of boron in Polish climate conditions. The experiment was conducted in waters contaminated with 1, 3, 6 and 8 mg B/dm3 for five days. Boron mass balance and biomass accumulation were evaluated at the final stage of the experiment. Biochemical analysis of the organic matter revealed changes in plants occurring as the result of boron accumulation.
Rocznik
Strony
87--94
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
autor
  • Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, anna.holtra@pwr.wroc.pl
Bibliografia
  • [1] WIOŚ, Informacja o stanie środowiska w 2009 r., Katowice, 2010, http://www.katowice.pios.gov.pl.
  • [2] WITKOWSKI A.J., KOWALCZYK A., RUBIN H., RUBIN K., Chemical waste disposal site as a source of groundwater contamination in the multi-aquifer system of Upper Silesia, Poland, Polish Geological Institute Special Papers, 2008, Vol. 24, 123–130.
  • [3] KABATA-PENDIAS A., PENDIAS H., Biogeochemia pierwiastków śladowych, PWN, Warsaw, 1999.
  • [4] ADAMSKI W., MAJEWSKA-NOWAK K., Zastosowanie reaktorów wielofunkcyjnych do oczyszczania wody, Ochrona Środowiska, 2010, Vol. 32, No. 1, 3–8.
  • [5] SKORBIŁOWICZ E., Aquatic plants as bioindicators of contamination of upper Narew River and some of its tributaries with heavy metals, Environment Protection Engineering, 2009, Vol. 35, No. 1, 65–79.
  • [6] KABSCH-KORBUTOWICZ M., KOZAK A., KRUPIŃSKA B., Ion exchange-ultrafiltration integrated process as a useful method in removing natural organic matter from water, Environment Protection Engineering, 2008, Vol. 34, No. 2, 79–94.
  • [7] PRASAD M.N.V., Aquatic plants for phytotechnology,[in:] Environmental Bioremediation Technologies, SINGH S.N., TRIPATHI R.D. (eds.), Springer, Berlin–Heidelberg, 2007.
  • [8] KÖMER S., VERMAAT J.E., The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater, Water Res., 1998, Vol. 32, No. 12, 3651–3661.
  • [9] KÖMER S., LYATUU G.B., VERMAAT J.E., The influence of Lemna gibba L. on the degradation of organic material in duckweed-covered domestic wastewater, Water Res., 1998, Vol. 32, No. 10, 3092–3098.
  • [10] El-SHAFAI S., El-GOHARY F., NASR F., van der STEEN P., GIJZEN H., Nutrient recovery from domestic wastewater using UASB-duckweed ponds system, Bioresour. Technol., 2007, Vol. 98, No. 4, 229–248.
  • [11] VALDERRAMA L.T., Del-CAMPO C.M., RODRIGUEZ C.M., De-BASHAN L.E., BASHAN Y., Treatment of hard-to-clean wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule, Water Res., 2002, Vol. 36, 4185–4192.
  • [12] OPORTO C., ARCE O., van den BROECK E., van der BRUGGEN B., VANDECASTEELE C., Experimental study and modelling of Cr(VI) removal from wastewater using Lemna minor, Water Res., 2006, Vol. 40, No. 7, 1458–1464.
  • [13] WANG Q., CUI Y., DONG Y., Phytoremediation of polluted waters: potentials and prospects of wetland plants, Acta Biotechnol., 2002, Vol. 22, No. 1–2, 129–208.
  • [14] ZAYED A., GOWTHAMAN S., TERRY N., Phytoaccumulation of trace elements by wetland plants: I. Duckweed, J. Environ. Qual., 1998, Vol. 27, 715–721.
  • [15] HOFFMANN T., KUTTER C., SANTAMARIA J.M., Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb, Engineering in Life Sciences, 2004, Vol. 4, No. 1, 61–65.
  • [16] MAINE M.A., SUNE N.L., LAGGER S.C., Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes, Water Research, 2004, Vol. 38, 1494–1501.
  • [17] MAINE M.A., DUARTE M.V., SUNE N.L., Cadmium uptake by floating macrophytes, Water Research, 2001, Vol. 35, No. 11, 2629–2634.
  • [18] ELANKUMARAN R., MOHAN R.B., MADHYASTHA M.N., Biosorption of copper from contaminated water by Hydrilla verticillata Casp. and Salvinia sp., 2003, http://www.ecoweb.com/editorial/030717.html.
  • [19] OLGUIN E.J., HERNANDEZ E., RAMOS I., The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium, Acta Biotechnologica, 2002, Vol. 22, No. 1–2, 121–131.
  • [20] NICHOLS P.B., COUCH J.D., Al-HAMDANI S.H., Selected physiological responses of Salvinia minima to different chromium concentrations, Aquatic Botany, 2000, Vol. 68, 313–319.
  • [21] GLANDON R.P., McNABB C.D., The uptake of boron by Lemna minor, Aquatic Botany, 1978, Vol. 4, 53–64.
  • [22] FRICK H., Boron tolerance and accumulation in the duckweed, Lemna minor, J. Plant. Nutr., 1985, Vol. 8, 1123–1129.
  • [23] Del-CAMPO M.C.M., ORON G., Boron removal by the duckweed Lemna gibba: a potential method for the remediation of boron-polluted waters, Water Res., 2007, Vol. 41, No. 20, 4579–4584.
  • [24] SASMAZ A., OBEK E., The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents, Ecological Engineering, 2009, Vol. 35, 1564–1567.
  • [25] WECHTEROWICZ Z., RAJOWSKA M., PROTASOWICKI M., Common duckweed (Lemna minor) as a potential bioindicator of heavy metal pollution of freshwaters, Chemia i Inżynieria Ekologiczna, 2005, Vol. 12, No. 10, 1155–1161.
  • [26] HOAGLAND D.R., ARNOLD D.J., The water culture method of growing plants without soil, Calif. Agric. Expt. Stn. Cir., 1950, Vol. 347, 1–32.
  • [27] PN-EN 12880:2004 Charakterystyka osadów ściekowych – Oznaczenie suchej pozostałości i zawartości wody.
  • [28] PN-86/C-05560/02 Woda i ścieki – Badania zawartości chlorofilu w wodach powierzchniowych. Oznaczanie chlorofilu alfa w glonach planktonowych metodą spektrofotometryczną monochromatyczną z poprawką na feopigmenty alfa.
  • [29] LOWRY O.H., ROSEBROUGH N.J., FARR A.L., RANDALL R.J., Protein measurement with the folin phenol reagent., Biol. Chem., 1951, Vol. 193, 265–275.
  • [30] PN-ISO 11268-1:1997 Jakość gleby – Wpływ zanieczyszczeń na dżdżownice (Eisenia fetida) – Oznaczanie ostrej toksyczności z zastosowaniem sztucznego podłoża glebowego.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0013-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.