PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odzysk ciepła w procesie termicznej utylizacji odpadów medycznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Heat recovery in medical waste thermal utilization systems
Języki publikacji
PL
Abstrakty
PL
Przedstawiono możliwości odzyskiwania energii cieplnej podczas procesu spalania odpadów medycznych oraz służący temu układ instalacji doświadczalnej, jego badania, ich wyniki, analizy i uogólnienia. Badaniami objęto układ rzeczywisty zbudowany m.in. do celów doświadczalnych w Szpitalu Onkologicznym w Bydgoszczy. Badano i analizowano zagadnienia dotyczące zwłaszcza: o strumienia energii cieplnej użytecznej odzyskiwanej w postaci pary nasyconej, o strumienia energii dodatkowej (gazu ziemnego) dostarczonej do układu w celu należytego przebiegu procesu utylizacji, o sumarycznej straty strumieni energii, o sprawności energetycznej układu. Na podstawie wyników przeprowadzonych badań oraz bilansów strumieni energii i masy rozpatrywanego układu opracowano model obliczeniowy do wyznaczania strumieni energii cieplnej użytecznej oraz dodatkowej. Posłużył on do analizy i weryfikacji otrzymanych wyników eksperymentalnych i ich uogólnienia. Przeanalizowano ponadto efekty stosowania badanego układu w aspektach: o energetycznym - określanie strumienia energii cieplnej odzyskanej i strumienia energii dodatkowej do procesu spalania oraz sprawności energetycznej układu, które mogą także służyć do budowania algorytmów sterowania jego pracą, o ekonomicznym - wyprowadzone formuły umożliwiają przeprowadzenie analizy opłacalności inwestycji oraz optymalizację jej analiz ekonomicznych, o ekologicznym - zmniejszenie zużycia paliw kopalnianych, a w związku z tym zmniejszenie emisji zanieczyszczeń i dwutlenku węgla do atmosfery (i zmniejszenie przez to niekorzystnego wpływu tzw. efektu cieplarnianego), Wykazano zgodność wyników otrzymanych za pomocą funkcji regresji wyznaczonej na podstawie przeprowadzonych badań doświadczalnych i modelu obliczeniowego. Podane równania, opisujące związek między strumieniem masy spalanych odpadów medycznych a jednostkowym strumieniem energii użytecznej, jednostkowym strumieniem energii dodatkowej, sumaryczną stratą strumieni energii oraz sprawnością energetyczną układu, można zatem uznać za miarodajne do posługiwania się przez badaczy i praktyków. Praca może być wykorzystana do prowadzenia dalszych badań układów termicznej utylizacji odpadów z odzyskiem ciepła zlokalizowanych w miejscu ich powstawania, czyli także w innych - niż szpitale - obiektach tworzących duże ilości odpadów.
EN
The paper outlines the possibilities of thermal heat recovery in medical waste incineration process, describes an experimental system used for that purpose and presents a study of the system, results of the study, its analyses and generalizations. The study was carried out for an existing system developed, inter alia for the experimental purpose, at the Oncology Hospital in Bydgoszcz. In particular, the study and the analysis were concerned with: o heat usable energy flux recovered as saturated steam, o secondary energy flux (natural gas) supplied to the system to facilitate the waste utilization process, o total energy flux loss, o system energy efficiency. On the basis of the study results and energy flux and weight balances for the analyzed system, a computational model was developed for determining usable heat energy and secondary energy flux. The model was used to analyze and verify the empirical results obtained and their generalization. Furthermore, the effects of using the said system were analyzed in relation to the following: o energy - description of recovered heat energy flux and secondary energy flux for the incineration process and energy efficiency of the system, which may be also used for creating algorithms controlling its operation, o cost-effectiveness - formulas introduced enable an analysis of investment profitability and an optimization of its economic analyses, o environmental protection - a reduced consumption of fossil fuels and consequently a reduced emissions of atmospheric pollution and carbon dioxide (resulting in reduction of so-called greenhouse effect). The results obtained with the use of a regression function formulated on the basis of empirical study matched those obtained with the use of the calculation model. The equations given, describing the relationship between flux of incinerated medical waste and unitary flux of usable energy, unitary flux of secondary energy, total loss of energy fluxes as well as energy efficiency of the system, may be considered reliable as regards their application by both researchers and practitioners. This study may be used for further analysis of waste thermal utilization systems with heat recovery built within facilities - not necessarily hospitals - where considerable amounts of waste are produced.
Twórcy
autor
  • Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Oddział w Bydgoszczy, ul. Rumińskiego 6, 85-950 Bydgoszcz, Przedsiębiorstwo Projektowo-Montażowe PROMONT, ul. Jagiellońska 35, 85-097 Bydgoszcz, dn@promont.com
Bibliografia
  • [1] ADAM E.J., MARCHETTI J.L., Dynamic simulation of large boilers with natural circulation, Comput. Chem. Eng., 1999, Vol. 23, p. 1031-40.
  • [2] ADAMS T.N., FREDERICK W.J., Kraft recovery boiler physical and chemical processes, The American Paper Institute, 1988.
  • [3] ADEME, French Agency for Environment and Energy Management, Evaluation des coûts induits par le projet de Directive Européenne sur l'incinération des déchets, ADEME, 2000.
  • [4] ADEME, French Agency for Environment and Energy Management. Incinération des déchets ménagers en France - Situation en 2000 - Evolutions et perspectives an 31.12.2002, ADEME, 2003.http.//vww.ademe. fr/ htdocs/publications/publipdf/rapaghtm.pdf.
  • [5] ADEME, French Agency for Environment arid Energy Management, Ash Management Facilities for Treatment and Stabilisation of MSW Incineration Bottom Ash - Assessment of 32 Facilities in France Funded by ADEME, ADEME, 2002.
  • [6] ADEME, French Agency for Environment and Energy Management, Evaluation sur les installations de traitement des déchets ménagers et assimilés en 2002 ITOM 2002, le Traitement Therique, ADEME. 2004. Mrp://www.ademe.fr/Collectivites/Dechets-new/Mots-chiffres/ITOM2002.asp.
  • [7] ADEME, French Agency for Environment and Energy Management. Bilan technico-économique des etudes de mise en conformité des UIOM réalisées en application de l'arrêté du 20 septembre 2002. ADEME, 2004. http://www.ademe.fr/htdocs/publications/publipdf/ uiom.htm.
  • [8] ANSI/ASME, Performance test codes 33: an American standard for large incinerators, New York, The American Society of Mechanical Engineers, 1978.
  • [9] ASTROM K.J., BELL R.D., Drum boiler dynamics, Automatica, 2000, 33, p. 363-78.
  • [10] AUTRET E., French treatment - a comprehensive assessment of 42 recent MSW incinerators, Waste Management World, 2004, p. 45-54.
  • [11] AUTRET E., BERTHIER F., LUSZEZANEC A., NICOLAS F., Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances, Journal of Hazardous Materials, 2007, Vol. B139, p. 569-574.
  • [12] Babcock Wanson CNIM Group. The boilers house solution equipment. Fire-tube boilers BWD series 2006.
  • [13] BENFENATI E., MARIANI G., FANELLI R., ZUCCOTTI S., 'De novo' synthesis of PCDD, PCDF, PCB, PCN and PAH in a pilot incinerator, Chemosphere, 22, p. 1045-1054.
  • [14] BHAMBRE K., MITRA S.K., GAITUNDE U.N., Modeling of a coal-fired natural circulation boiler, Trans. ASME: J. Energy Res. Tech., 2007, Vol. 129, p. 159-67.
  • [15] BOURKAS P.D., Applications of installations in hospitals, National Technical University of Athens, Athens, 1999.
  • [16] British standard. Incinerators. Part 1. Specification for standard performance requirements for incineration plant for the destruction of hospital waste, BS 3316: Part 1: 1987. British standard. Incinerators. Part 2. Methods of test and calculation for the performance of incineration plant for the destruction of hospital waste, BS 3316: Part 2: 1987.
  • [17] British standard. Incinerators. Part 3. Method for specifying purchasers ' requirements for incineration plant for the destruction of hospital waste. BS 3316: Part 3: 1987.British standard. Incinerators. Part 4. Code of practice for the design, specification, installation and commissioning of incineration plant for the destruction of hospital waste. BS 3316: Part 4: 1987.
  • [18] BUJAK J., Zużycie ciepła w szpitalach, Ochrona Środowiska, artykuł w druku.
  • [19] BUJAK J., Minimizing energy losses in steam systems for potato starch production, Journal of Cleaner Production, 2009, Vol. 17, No. 16, p. 1453-1464.
  • [20] BUJAK J., MUZYCZUK P., Modernizacja systemu utylizacji odpadów medycznych Regionalnego Centrum Onkologii w Bydgoszczy, XVI Krajowa Konferencja Naukowo-Techniczna „Ekologiczne i energooszczędne budownictwo oraz mieszkalnictwo wojskowe", EKOMILITARIS 2002, Zakopane, 2002.
  • [21] BUJAK J., Energy savings and heat efficiency in the paper industry: A case study of a corrugated board machine, Energy, 2008, Vol. 33, No. 11, p. 1597-1608.
  • [22] BUJAK J., Mathematical modeling of a steam boiler room to research thermal efficiency, Energy, 2008, Vol. 33, No. 12, p. 1779-1787.
  • [23] BUJAK J., Experimental study of the energy efficiency of an incinerator for medical waste, Applied Energy, 2009, Vol. 86, No. 11, p. 2386-2393.
  • [24] BUJAK J., The influence of heat losses arising during combustion chamber ventilation on the coefficient of thermal performance rate of a steam boiler, Instal., 2007, Vol. 10, p. 6-9 (in Polish).
  • [25] BUJAK J., BALDYGA M, The influence of the boiler blow-off on its thermal performance, Installation Market, 2007, Vol. 10, p. 42-46 (in Polish).
  • [26] BULSKA E., KONIECZKA P., KREMER E., NAGANOWSKA-NOWAK A., NAMIEŚNIK J., ROMPA M, ŚWITAJ-ZAWADKA A., ZYGMUNT B., Ocena i kontrola jakości wyników pomiarów analitycznych, Wydawnictwo Naukowo-Techniczne, Warszawa, 2007.
  • [27] CAMPBELL J.R., CHARLES E., Incineration: tested & true, Chemical Engineering, New York, 1997, Vol. 104, p. 142-145
  • [28] CHEIN K.L., ERGIN E.I., LING C, LEE A., Dynamic analysis of a boiler, Trans. ASME 1958, 80, 1809-19.
  • [29] CHEN K.S., TSAl Y.J., Lou J.C., Three-dimensional combustion modeling in municipal solid-waste incinerator, Journal of Environment Engineering, 1999, Vol. 125(2), p. 166-74.
  • [30] CHOI Y.D., HAN S.H., CHO S.H., KIM D.S., UM C.J., Study on the simulation of heat pump heating and cooling systems to hospitals building, Transactions of the Korean Society of Mechanical Engineers B, 2008, Vol. 32(4), p. 275-282.
  • [31] CHU J.Z., SHIEH S.S., JANG S.S., CHIEN C.I., WAN H.P., Ko H.H., Constrained optimization of combustion in a simulated coal-fired boiler using artificial neural network model and information analysis, Fuel, 2003, Vol. 82. p. 693-703.
  • [32] CIBSE GUIDE Volume B, Installation and Equipment Data, The Chartered Institution of Building Services Engineers, London, 1986.
  • [33] CITEPA, Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique, Inventaire des émissions de polluants atmosphériques en France - format SECTEN, 2004. hltp://www.citepa.org/publications/secten-2003.pdf.
  • [34] CLAUS G., STEPHAN W., A general computer simulation model for furnaces and boilers, ASHRE Transactions, 1985, Vol. 91, p. 47-59.
  • [35] DEAN K., Heat-recovery incinerator for a community hospital, ASHRAE Journal, 1996, Vol. 38, p. 49-53.
  • [36] Dyrektywa 2000/76 we Parlamentu Europejskiego i Rady z dnia 4 grudnia 2000 r. w sprawie spalania odpadów (komunalnych i niebezpiecznych).
  • [37] ECN 2002 - Energy research Centre of the Netherlands, www.ecn.nl.
  • [38] ELLISON S.L.R., ROSSELEIN M., WILLIAMS A., Quantifying Uncertainty in Analytical Measurements, EURACHEM, 2nd Edition, 2000.
  • [39] FEINDLER K.S., Adaptation of the boiler as calorimeter method to two-stage municipal waste combustors, Proceedings of the 1996 ASME 17th Biennial Waste Processing Conference, Atlantic City, NJ, ASME, 1996, p. 459-82.
  • [40] FERRAZ A., CARDOSO B., PONTES R., Concentration of atmospheric pollutants in the gaseous emissions of medical waste incinerators, Journal of the Air and Waste Management Association, 2000, Vol. 50, p. 131-136.
  • [41] FERRAZ A., AFONSO S., Dioxin emission factors for the incineration of different medical waste types, Archives of Environmental Contamination and Toxicology, 2003, Vol. 44, p. 460-466.
  • [42] GAGLIA A.G., BALARAS C.A., MIRASGEDIS S., GEORGOPOULU E., SARAFIDIS Y., LALAS D.P., Empirical assessment of the Hellenic non-residential building stock, energy consumption, emissions and potential energy savings, 2007, Vol. 48, p. 1160-1175.
  • [43] GANAPATHY V., Optimize energy efficiency of HRSG, Hydrocarbon Processing, 2001, Vol. 80, p. 41-44.
  • [44] GANAPATHY V., Optimize energy efficiency of HRSG, Hydrocarbon Processing, 2001, Vol. 80, p. 41-44.
  • [45] GANAPATHY V., Waste heat boiler deskbook, 1991, Fairmont Press, Atlanta.
  • [46] GlUGLIANO M., CERNUSCHI S., GROSSO M., ALOIGI E., MIGLIO R., The flux and mass balance of PCDD/F in a MSW incinerator full-scale plant, Chemosphere, 2002, Vol. 46, p. 1321-1328.
  • [47] GOH Y.R., LIM C.N., ZAKARIA R., CHAN K.H., REYNOLDS G., YANG Y.B., SIDDALL R.G., NASSERZADEH V., SWITHENBANK J., Mixing, modeling and measurements of incinerator bed combustion, Process Safety and Environmental Protection, 2000, Vol. 78, p. 21-32
  • [48] GOOD J., NUSSBAUMER T., Efficiency improvement and emission reduction by advanced combustion control technique (ACCT) with CO/lambda control and set point optimization, [in:] Biomass for energy industry, 10th European Conference and Technology Exhibition, Wurzburg, Germany, 1998, p. 1362-5.
  • [49] GRIECO E., POGGIO A., Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste-to-energy plant, Applied Energy, 2008, 86, p. 1517-1523.
  • [50] GROCHOWALSKI A., PCDDs and PCDFs concentration in combustion gases and slags from incineration of hospital wastes in Poland, Chemosphere, 1998, Vol. 37, p. 2279-2291.
  • [51] GROCHOWALSKI A., Badania nad oznaczaniem polichlorowanych dibenzodioksyn, dibenzofuranów i bifenyli, Zeszyty Naukowe Politechniki Krakowskiej, Monografia 272, Kraków 2000, ISSN 0860-097X.
  • [52] GROCHOWALSKI A., Nowoczesne metody termiczne unieszkodliwiania odpadów niebezpiecznych, Politechnika Krakowska. http://www.pcb.p
  • [53] GÜRÜZ H.K., A simple method for predicting the overall performance of fuel-oil fired boilers, Combustion Science and Technology, 1977, Vol. 17, p. 163-168.
  • [54] HERMANN J., HARASIMOWICZ-HERMANN G, Sposoby postępowania z odpadami powstającymi w wyniku termicznego przekształcania odpadów medycznych i weterynaryjnych, International Conference „Medical waste and animal remains management", 2007, Bydgoszcz, Materiały Konferencyjne, p. 117-123.
  • [55] HOLMGREN K., Role of a district-heating network as a user of waste-heat supply from various sources - the case of Göteborg, Applied Energy, 2006, Vol. 83, p. 1351-1367.
  • [56] Hsi CH.L., Kuo J.T., Estimation of fuel burning rate and heating value with highly variable properties for optimum combustion control, Biomass and Bioenergy, 2008, Vol. 32, p. 1255-1262.
  • [57] http://pl.wikipedia.org/wiki
  • [58] HUANG B.J., YEN R.H., SHYU W.S., A steady-state thermal performance model of fire-tube shell boiler, ASME J. of Engineering for Gas Turbines and Power, 1988, Vol. 110, p. 173-179.
  • [59] IBANEZ R., ANDRES A., VIGURI J.R., ORTIZ I., IRABIEN J.A., Characterisation and management of incinerator wastes, Journal of Hazardous Materials, 2000, Vol. A79, p. 215-227.
  • [60] IDRIS A., SAED K., Characteristics of slag produced from incinerated hospital waste, Journal of Hazardous Materials, 2002, Vol. B93, p. 201-208.
  • [61] IRWIN G., BROWN M., HOGG B., SWIDENBANK E., Neural network modeling of a 200 MW boiler system, IEE Proc. - Control Theory Appl., 1995, Vol. 142(6), p. 529-36.
  • [62] ISO, Guide to the Expression of Uncertainty in Measurements (GUM), Geneva, 1993.
  • [63] JANGSAWANG W., FUNGTAMMASAN B., KERDSUWAN S., Effects of operating parameters on the combustion of medical waste in a controlled air incinerator, Energy Conversion and Management. 2005, Vol. 46, p. 3137-3149.
  • [64] KANEKO S., TAKATUKA H., ARAKAWA Y., TANAKA R., Mitsubishi-CBC high efficiency chemical recovery boiler power generation system, Pulp and Paper Annual Meeting ABTCP, Brasil, Sao Paulo, October 1998, p. 19-23.
  • [65] KATHIRAVALE S., YUNUS M.N.M., SOPIAN K., SAMSUDDIN A.H., RAH-MAN R.A., Modeling the heating value of municipal solid waste, Fuel, 2003, Vol. 82, p. 1119-25.
  • [66] KATSANIS J.S., HALARIS P.G., MALAHIAS G.N., BOURKAS P.D., Estimation of energy consumption in hospitals, Proceedings of the Fifth IASTED International Conference "Power and Energy Systems", June 15-17, 2005, Benalmadena, Spain.
  • [67] KATSANIS J.S., HALARIS P.G., TSARABARIS P.T., MALAHIAS G.N., BOURKAS P.D., Estimation of energy consumption for domestic hot water in hospitals, Series on Energy and Power Systems, 2006, Vol. 2006, p. 1-7.
  • [68] KATSANIS J.S., HALARIS P.G., TSARABARIS P.T., MALAHIAS G.N., BOURKAS P.D., Estimating water and energy consumption of hospitals laundries, AATCC Review, 2008, Vol. 8, No. 7, p. 32-36.
  • [69] KAYS W.M., LONDON A.L., Compact Heat Exchangers, Wydanie III, New York, USA, McGraw and Hill Book Company, 1984.
  • [70] KEHLHOFER R., Combined-Cycle Gas and Steam Turbine Power Plants, Fairmont Press Inc., 1991.
  • [71] KIM J.H., Energy reduction using a waste heat recovery and generating system (WHRGS), World Cement, 1995, Vol. 26, 3 pp.
  • [72] KODRES C.A., Theoretical thermal evaluation of energy recovery incinerators, part I: Modeling, ASME Journal of Energy Resources Technology, 1987, Vol. 109, p. 79-83.
  • [73] Konwencja Sztokholmska (Artykuł 5, Aneks C): http://www.pops.int/documents/meetings/bat_bep/2nd session/egb2_followup/draftguide/default.htm
  • [74] KOZAKIEWICZ J., SITEK J., Kotły odzyskowe - konstrukcja i budowa, Materiały I Konferencji Naukowo-Technicznej 2000, „Energetyka Gazowa", Szczyrk, 2000.
  • [75] K.S. Werner-Verlag GmbH, Sanitare Haustechnik, Dusseldorf, 1981.
  • [76] Kuo H.W., SHU S.L., Wu CC, LAI J.S., Characteristics of medical waste in Taiwan, Water, Air and Soil Pollution, 1999, Vol. 114, p. 413-421.
  • [77] Kuo J.T., System simulation and control of batch-fed solid waste incinerators, Transactions of ASME, Journal of Dynamic Systems, Measurement and Control, 1996, Vol. 118, p. 620-5.
  • [78] Kuo J.T., Estimation of burning rates in solid waste combustion furnaces, Combustion Science and Technology, 1998, Vol. 137, p. 1-29.
  • [79] Kuo J.T., CHAN C.Y., CHEN C.N., Heat and mass balance analysis of Mu-Cha MSW-to-energy incineration plant, Proceedings of the second International Conference on Solid Waste Management, Taipei, Taiwan, EPA and Taipei City Government, ROC, 2000, p. 265-74.
  • [80] KWAN H.W., ANDERSON J.H., A mathematical model of a 200 MW Boiler, Int. J. Control, 1970, Vol. 12(6), p. 977-98.
  • [81] LAND G., Industrial steam production with gas engine exhaust, CADDET Energy Efficiency Technical Newsletter, 1998, No. 8.
  • [82] LEE CC, HUFFMAN G.L., NALEŚNIK R.P., Medical waste management, Environmental Science and Technology, 1991, Vol. 25, p. 360-363.
  • [83] LEE W.J., LIOW M.-C, TSAI P.-J., HSICH L.T., Emission of polycyclic aromatic hydrocarbons from the medical waste incinerators, Atmospheric Environment, 2002, Vol. 36, p. 781-790.
  • [84] Li C.S., JENG F.T., Physical and chemical composition of hospital waste, Infection control and hospital epidemiology: the official journal of the Society of Hospitals Epidemiologists of America, 1993, Vol. 14, p. 145-150.
  • [85] LlNDER G., JENKINS A.C, MCCORMACK J., ADRIAN R.C, Dioxins and furans in emissions from medical waste incinerators, Chemosphere, 1990, Vol. 20, p. 1793-1800.
  • [86] Liu C, LIU J., NlU Y., LIANG W., Nonlinear boiler model of 300 MW power unit for system dynamic performance studies, IEEE Trans. Ind. Electron., 2001, Vol. 2, p. 1296-300.
  • [87] Liu Y., MA L., LIU Y., KONG G., Investigation of novel incineration technology for hospital waste, Environmental Science and Technology, 2006, Vol. 40, p. 6411-6417.
  • [88] Lo K.L., SONG Z.M., MARCHAND E., PINKERTON A., Development of a static-state estimator for a power station boiler. Part I. Mathematical model, Electr. Power Syst. Res., 1990, Vol. 18, p. 175-79.
  • [89] LOWE A., WALL T.W., STEWART I McC. A zoned heat transfer model of a large tangentially fired pulverized coal boiler, 15th Symp. (Int.) on Combustion. The Combustion Institute, 1975, p. 1261.
  • [90] Lu S., Dynamic modeling and simulation of power plant systems, Proc. Inst. Mech. Eng., Part A, 1999, Vol. 213, p. 7-22.
  • [91] Lu S., HOGG B.W., Dynamic and nonlinear modelling of power plant by physical principles and neural networks, Electrical Power & Energy Systems, 2000, Vol. 22, p. 67-78.
  • [92] Lu S., YAN J., JIANG X., MA Z., LI X., CHI Y., Ni M., CEN K., Experimental study on dioxin emission and reduction in a multi-stage gasification and incineration facility for medical waste, Air and Waste Management Association, 27th Annual International Conference on Thermal Treatment Technologies, 2008, Vol. 1, p. 172-180.
  • [93] MAJOR G., Learning from experiences with small-scale cogeneration, CADDET Analyses Series No. 1, Sitard, Netherlands, 1993.
  • [94] MANGIALARDI T., PAULINI A.E., POLETTINI A., SlRINI P., Optimization of the solidification-stabilization process of MSW fly ash in cementitious matrices, Journal of Hazardous Materials, 1999, Vol. B70, p. 53-70.
  • [95] MAŃKOWSKI S., Projektowanie instalacji cieplej wody użytkowej, Wydawnictwo Arkady, Warszawa, 1981.
  • [96] MARIAN! G., BENFENATI E., FANELLI R., Concentrations of PCDD and PCDF in different points of a modern refuse incinerator, Chemosphere, 1990, Vol. 21, p. 507-517.
  • [97] MASUDA Y., KURATSUNE M., YOSHIMURA H., HORI Y., OKUMURA M., Yusho, a Human Disaster Caused by PCBs and Related Compounds, Kyushu University Press, Fukuoka, 1996, ISBN 4-87378-431-X.
  • [98] MEDD, Ministère de l'Ecologie el du Développement Durable, L'évolution récente des emissions de dioxines dans l'atmosphère 2003. http;//www.ecologie.gouv.fr/article.php3?id.article+842.
  • [99] MEDD, Ministère de l'Ecologie el du Développement Durable, La réduction des émissions de dioxines des usines d'incinération d'ordures ménagères, 2003. http://wwwv.ecologie.gouv.fr/article.pkp3?id.article=841.
  • [100] MERAZ L., DOMINGUEZ A., KORNHAUSER I., ROJAS F., A thermo-chemical concept-based equation to estimate waste combustion enthalpy from elemental composition, Fuel, 2003, Vol. 82, p. 1499-507.
  • [101] MIHELIC-BOGDANIC A., BUDIN R., Heat recovery in thermoplastics production, Energy Conversion & Management, 2002, Vol. 43, p. 1079-1089.
  • [102] MININNI G., SBRILLI A., BRAGUGLIA M., GUERRIERO E., MARANI D., ROTATORI M., Dioxins, furans and polycyclic aromatic hydrocarbons emissions from hospital and cemetery waste incinerator, Atmospheric Environment, 2007, Vol. 41, p. 8527, 8536.
  • [103] MORI Y., KIKEGAWA Y., UCHIDA H., A model for detailed evaluation of fossil-energy saving by utilizing unused but possible energy-sources on a city scale, Applied Energy, 2007, Vol. 84, p. 921-935.
  • [104] NADZIAKIEWICZ J., Warunki autotermicznego spalania odpadów stałych, Gospodarka Paliwami i Energią, 2000, nr 10, s. 5-7.
  • [105] Natural Resources Canada, Office of Energy Efficiency, Consumption of Energy Survey for Universities, Colleges and Hospitals, 2003, www.oee.nrcan.gc.ca.
  • [106] NIU Z., WONG K.V., Adaptive simulation of boiler unit performance, Energy Conversion & Management, 1998, Vol. 39, p. 1383-1394.
  • [107] Opracowanie projektu procesowego spalarni odpadów, sprawozdanie z pracy NB-241/RME-1/90. Katedra Techn. i Urządzeń Zagosp. Odpadów. Politechnika Śląska, Gliwice.
  • [108] ORNE M., Estimates of the energy impact of ventilation and associated financial expenditures, Energy and Buildings, 2001, Vol. 33(3), p. 199-205.
  • [109] PIECUCH T., Termiczna utylizacja odpadów i ochrona powietrza przed szkodliwymi składnikami spalin, 1988, Politechnika Koszalińska.
  • [110] PN-EN 12953-10. Shell boilers - Part 10. Requirements for boiler feed water and boiler water quality 2006.
  • [111] PN-EN 12953-11. Shell boilers - Part 11. Acceptance tests 2006.
  • [112] PORTEOUS A., Energy from waste incineration - a state of the art emissions review with an emphasis on public acceptability, Applied Energy, 2001, Vol. 70, p. 57-167.
  • [113] RICHTER W., PAYNE R., Application of advanced computer models for performance analysis of p.f. and cwm fired industrial furnaces and boiler combustion chambers, Proc. of 1 st Annual Pittsburgh Coal Technology Conference and Exhibition, 1984, p. 592-611.
  • [114] VAN HEUR R., Power Quality Utilization Guide - Hospitals, Leonardo ENERGY, January, 2008, www.leonardo-energy.org.
  • [115] ROOS H., Zagadnienia hydrauliczne w instalacjach ogrzewania wodnego, Przedsiębiorstwo Naukowo-Techniczne, CIBET, Warszawa, 1997.
  • [116] Rozporządzenie Ministra Gospodarki z dnia 21 marca 2002 r. w sprawie wymagań dotyczących prowadzenia procesu termicznego przekształcenia odpadów (DzU Nr 37, poz. 339) (Zmiana: DzU z 2004 r. Nr 1, poz. 2).
  • [117] Rozporządzenie Ministra Środowiska z dnia 27 września 2001 r. w sprawie katalogu odpadów (DzU Nr 112, poz. 1206, jednolity tekst DzU z 2007r. Nr 39.).
  • [118] Rozporządzenie Ministra Zdrowia z dnia z dnia 23 grudnia 2002 roku w sprawie dopuszczalnych sposobów i warunków unieszkodliwiania odpadów medycznych i weterynaryjnych (DzU 2003, Nr 8, poz. 104, zmiana: DzU 2004, Nr 200, poz. 2061);
  • [119] RUAN Y., Liu Q., ZHOU W., FIRESTONE R., GAO W., WATANABE T., Optimal option of distributed generation technologies for various commercial buildings, Applied Energy, 2009, Vol. 86, p. 1641-1653.
  • [120] RUAN Y., LIU Q., ZHOU W., FIRESTONE R., GAO W., WATANABE T., Optimal option of distributed generation technologies for various commercial buildings, Applied Energy, 2009, Vol. 86, p. 1641-1653.
  • [121] RUSINOWSKI H., STANEK W., Neural modelling of steam boilers, Energy Conversion and Management, 2007, Vol. 48, p. 2802-09.
  • [122] RYU C, YANG Y.B., NASSERZADEH V., SWITHENBANK J., Thermal reaction modeling of a large municipal solid waste incinerator, Combustion Science and Technology, 2004, Vol. 176, p. 1891-907.
  • [123] SAKAI E., MIYAHARA S., OHSAWA S., LEE S.H., DAIMON M., Hydration of fly ash cement, Cement and Concrete Research, 2005, Vol. 35, p. 1135-1140.
  • [124] SCHIPPER L., MEYERS S., Energy Efficiency and Human Activity, Cambridge University Press, Cambridge, UK, 1992.
  • [125] SEKUŁA R., Alternatywne metody termicznej destrukcji odpadów toksycznych, Ochrona Powietrza i Problemy Odpadów, nr 1/1996.
  • [126] SHENG C, AZEVEDO J.L.T., Estimating the higher heating value of biomass fuels from basic analysis data, Biomass and Bioenergy, 2005, Vol. 28, p. 499-507.
  • [127] SHIRAISHI Y., ITO T., KAWABATA H., SUYARI M., MINOURA T., SAKANO M., Municipal solid waste fluidized-bed incinerator with high-efficient heat recovery system, Research and Development Kobe Steel Engineering Reports, 1997, Vol. 47, p. 47-51.
  • [128] SHRILLI A., MINNNI G., GUERRIERO E., ROTATORI M., MOLINELLI M.L., LOTITO V., PCDD/Fs emissions from hospital waste incinerator, Proceedings of the European Combustion Meeting. 2003.
  • [129] SIMONEN L., SAVIHARJU K., Modern recovery boilers, Celulosa Y Papel, 2005, Vol. 21, p. 24-27.
  • [130] SKOREK J., KALINA J., Gazowe układy kogeneracyjne, Wydawnictwa Naukowo-Techniczne, Warszawa 2005, p. 195, 204.
  • [131] STANNORE B.R., CLUNIES-ROSS C, An empirical model for the de novo formation of PCDD/F in medical waste incinerators, Environmental Science and Technology, 2000, Vol. 34, p. 4538-4544.
  • [132] STEWARD F.R., GÜRÜZ H.K., Mathematical simulation of an industrial boiler by the zone method of analysis, Heat Transfer in Flames, ed. N.H. Afgan, J.M. Beer, Scripta Book Co., 1974.
  • [133] SZEWCZYŃSKA M., EKIERT E., Dioksyny w procesach spalania odpadów medycznych, Bezpieczeństwo Pracy, 2005, 9/2005, CIOP-PIB.
  • [134] TAKAI S., Energy saving by installation of boiler exhaust gas heat recovery system, Japan Tappi Journal, 2006, Vol. 60, p. 39-47.
  • [135] TRAN H., ARAKAWA Y., Recovery boiler technology in Japan, Tappi Engineering/Finishing and Converting Conference and Trade Fair, 2001, p. 465-477.
  • [136] TYSSO A., Modeling and parameters estimation of a ship boiler, Automática, 1981, Vol. 17, p. 157-66.
  • [137] USORO P.B., Modeling and simulation of a drum boiler-turbine power plant under emergency state control, M.S. thesis, Massachusetts Institute of Technology, 1977.
  • [138] VAN KESSEL L.B.M., ARENDSEN A.R.J., BREM G., On-line determination of the calorific value of solid fuels, Fuel, 2004, Vol. 83, p. 59-71.
  • [139] Viessmann Co. Technical Data. Vitomax 200 HS. Folder Vitotec, register (Index) 24, p. 10-11, February 2002 (in Polish).
  • [140] Viessmann Co. Technical Data. Vitomax 200 HS. Folder Vitotec, register (Index) 22, p. 9-11, June 2006 (in German).
  • [141] VOSKOBOINIKOV V.G., The heat capacity of the blast furnance slags at high temperatures, Teoriya Prabtiba Metallurgii, 12(10), p. 3-5.
  • [142] WANDRASZ J.W., Gospodarka odpadami medycznymi, Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Oddział Wielkopolski w Poznaniu, Poznań, 2000.
  • [143] WANDRASZ J.W., WANDRASZ A.J., Paliwa formowane - biopaliwa i paliwa z odpadów w procesach termicznych, Wydawnictwo 'Seidel-Przywecki' sp. z o.o., Wydanie pierwsze, Warszawa, 2006.
  • [144] WHEATLEY A.D., SADHRA S., Polycyclic aromatic hydrocarbons in solid residues from waste incineration, Chemosphere, 2004, Vol. 55, p. 743-749.
  • [145] WIELGOSIŃSKI G., Legal aspects on medical waste incineration, International Conference „Medical waste and animal remains management", Bydgoszcz, 27-28 września 2007, PZITS Bydgoszcz.
  • [146] XIE R., Li W., LI J., Wu B., YI J., Emission investigation for a novel medical waste incinerator, Journal of Hazardous Materials, 2008, article in press.
  • [147] XU P., GAO W.J., HIROKI T., XUAN J., Model analysis on using solar water heating system in hospital, Journal of South China University of Technology (Natural Science), 2007, Vol. 35(SUPPL), p. 191-194.
  • [148] YANG Y.B., GOH Y.R., ZAKARIA R., NASSERZADEH V., SWITHENBANK J., Mathematical modeling of MSW incineration on a traveling bed, Waste Management, 2002, Vol. 22, p. 369-80.
  • [149] Zeszyty szkoleniowe firmy Viessmann.
  • [150] ZHELEV T.K., SEMKOV K.A., Cleaner flue gas and energy recovery through pinch analysis, Journal of Cleaner Production, 2004, Vol. 12, p. 165-170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0012-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.