PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Separation of anionic surface-active agents in an integrated ion exchange-sedimentation-ultrafiltration purification system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The efficiencies of separation of anionic surface-active agents (ASAAs) from aqueous solutions below the critical micelle concentration were determined in an integrated purification system combining ion exchange, sedimentation and ultrafiltration. The tests were carried out using five types of anion-exchange resins (strongly and weakly basic) and flat polyethersulfone membranes with cut-off values of 5, 10 and 30 kDa. Combination of ion exchange and low-pressure membrane separation processes was found to facilitate effective separation of ASAAs from aqueous solutions below the critical micelle concentration. Integration of both unit processes was observed to be most beneficial in the case of membrane with the highest cut-off (30 kDa), which was characterized by low ASAA retention factors when ultrafiltration was carried out as a standalone process. The presence of the ion-exchange resin was also found to allow a significant reduction in membrane fouling and retention of high hydraulic efficiency.
Rocznik
Strony
33--42
Opis fizyczny
bibliogr. 20 poz.
Twórcy
autor
  • Wrocław University of Technology, Institute of Environment Protection Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, izabela.kowalska@pwr.wroc.pl
Bibliografia
  • [1] VAN DER BRUGGEN B., CURCIO E., DRIOLI E., Process intensification in the textile industry: the role of membrane technology, Journal of Environmental Management, 2004, 73, 267–274.
  • [2] RAJCA M., BODZEK M., KONIECZNY K., Modeling of efficiency of ultrafiltration and microfiltration in natural water treatment, Ochrona Środowiska, 2008, 30 (1), 13–20 (in Polish).
  • [3] KONIECZNY K., RAJCA M., BODZEK M., KWIECIŃSKA A., Water treatment using hybrid method of coagulation and low-pressure membrane filtration of efficiency of ultrafiltration and microfiltration in natural water treatment, Environment Protection Engineering, 2009, 35 (1), 5–22.
  • [4] AKBIL BASAR C., KARAGUNDUZ A., CAKICI A., KESKINLER B., Removal of surfactants by powdered activated carbon and microfiltration, Water Research, 2004, 38, 2117–2124.
  • [5] GONZALEZ S., PETROVIC M., BARCELO D., Evaluation of two pilot scale membrane bioreactors for the elimination of selected surfactants from municipal wastewaters, Journal of Hydrology, 2008, 356, 46–55.
  • [6] SEO G.T., LEE T.S., MOON B.H., LIM J.H., Ultrafiltration combined with ozone for domestic laundry wastewater reclamation and reuse, Water Supply, 2001, 5–6, 387–392.
  • [7] SOSTAR-TURKA S., PETRINICA I., SIMONIC M., Laundry wastewater treatment using coagulation and membrane filtration, Resources, Conservation and Recycling, 2005, 44, 185–196.
  • [8] ZHANG H., QUAN X., CHEN S., ZHAO H., ZHAO Y., The removal of sodium dodecylbenzene sulfonate surfactant from water using silica/titania nanorods/nanotubes composite membrane with photocatalytic capability, Applied Surface Science, 2006, 252, 8598–8604.
  • [9] GOERS B., MEY J., WOZNY G., Optimised product and water recovery from batch-production rinsing waters, Waste Management, 2000, 20, 651–658.
  • [10] KOWALSKA I., Surfactant separation in pressure-driven membrane processes, Environment Protection Engineering, 2008, 34 (2), 105–113.
  • [11] TU Z., DING L., FRAPPART M., JAFFRIN M.Y., Studies on treatment of sodium dodecyl benzene sulfonate solution by high shear ultrafiltration system, Desalination, 2009, 240, 251–256.
  • [12] KERTÉSZ SZ., LÁSZLÓ ZS., HORVÁTH ZS.H., HODÚR C., Analysis of nanofiltration parameters of removal of an anionic detergent, Desalination, 2008, 221, 303–311.
  • [13] KAYA Y., AYDINER C., BARLAS H., KESKINLER B., Nanofiltration of single and mixture solutions containing anionics and nonionic surfactants below their critical micelle concentrations (CMCs), Journal of Membrane Science, 2006, 282, 401–412.
  • [14] YANG W.B., LI A., FAN J., YANG L., ZHANG Q., Mechanism and behavior of surfactant adsorption onto resins with different matrices, Reactive and Functional Polymers, 2007, 67, 609–616.
  • [15] YANG W.B., XIA M., LI A., YANG L., ZHANG Q., Adsorption of branched alkyl-benzene sulfonate onto styrene and acrylic ester resins, Chemosphere, 2006, 64, 984–990.
  • [16] SCHOUTENA N., VAN DER HAMB L.G.J., EUVERINKA G.-J.W., DE HAANC A.B., Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water, Water Research, 2007, 41, 4233–4241.
  • [17] The catalogue of Sigma products.
  • [18] http://www.miexresin.com/
  • [19] KABSCH-KORBUTOWICZ M., KOZAK A., KRUPIŃSKA B., Ion exchange–ultrafiltration integrated process as a useful method in removing natural organic matter from water, Environment Protection Engineering, 2008, 33 (2), 79–93.
  • [20] The catalogue of Nadir® membranes.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0012-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.