PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation and characterization of titania coating used as a photoactive refill in the process of water purification

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present work was to characterize the photoactive refill used in the process of photocatalytic decomposition of organic dye (Acid Red 18) in water. Titanium dioxide was immobilized on the base material as a thin layer from the alcoholic suspension followed by thermal stabilization. The prepared coating exhibited high stability in repeated cycles of water treatment. The photoactive refill was characterized not only by the activity tests but also by XRD, FTIR and UV/Vis - DRS. The amount of titanium dioxide immobilized on a glass fabric support was determined as well. The reactor with photoactive refill solves the problem of the replacement of the reactor or its parts when the photocatalyst activity decreases.
Rocznik
Strony
63--74
Opis fizyczny
bibliogr. 22 poz.
Twórcy
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, joanna.grzechulska@zut.edu.pl
Bibliografia
  • [1] HOFFMAN M.R., MARTIN S.T., CHOI W., BAHNEMANN D.W., Environmental applications of semiconductor photocatalysis, Chemical Reviews, 1995, 95, 69–91.
  • [2] SCHIAVELLO M., Heterogeneous Photocatalysis, John Willey & Sons, Chichester, New York, Wienheim, Brisbane, Singapore, Toronto, 1997.
  • [3] MILLS A., LeHUNTE S., An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 1–35.
  • [4] HERRMANN J.-M., Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, 1999, 53, 115–129.
  • [5] FUJISHIMA A., RAO T.N., TRYK D., Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1, 1–21.
  • [6] KANEKO M., OKURA I., Photocatalysis. Science and technology, Kodansha Ltd., Tokyo, Springer- Verlag, Berlin, Heidelberg, New York, 2002.
  • [7] BAHNEMANN D., Photocatalytic water treatment: solar energy applications, Solar Energy, 2004, 77, 445–459.
  • [8] HASHIMOTO K., IRIE H., FUJISHIMA A., TiO2 photocatalysis: A historical overview and future prospects, Japanese Journal of Applied Physics, 2005, 44, 8269–8285.
  • [9] FUJISHIMA A., ZHANG X., TRYK D.A., Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup, International Journal of Hydrogen Energy, 2007, 32, 2664–2672
  • [10] ALLEN N.S., EDGE M., VERRAN J., STRATTON J., MALTBY J., BYGOTT C., Photocatalytic titania based surfaces: Environmental benefits, Polymer Degradation and Stability, 2008, 93, 1632–1646.
  • [11] FERNÁNDEZ A., LASSALETTA G., JIMÉNEZ V.M., JUSTO A., GONZÁLEZ-ELIPE A. R., HERRMANN J.-M., Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification, Applied Catalysis B: Environmental, 1995, 7, 49–63.
  • [12] GRZECHULSKA J., MORAWSKI A.W., Photocatalytic labyrinth flow reactor with immobilized P25 TiO2 bed for removal of phenol from water, Applied Catalysis B: Environmental, 2003, 46, 415–19.
  • [13] PARRA S., STANCA S.E., GUASAQUILLO I., THAMPI K.R., Photocatalytic degradation of atrazine using suspended and supported TiO2, Applied Catalysis B: Environmental, 2004, 51, 107–116.
  • [14] MOZIA S., TOMASZEWSKA M., MORAWSKI A.W., Decomposition of nonionic surfactant in a labyrinth flow photoreactor with immobilized TiO2 bed, Applied Catalysis B: Environmental, 2005, 59, 155–160.
  • [15] DIJKSTRA M.F.J., MICHORIUS A., BUWALDA H., PANNEMAN H.J., WINKELMAN J.G.M., BEENACKERS A.A.C.M., Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation, Catalysis Today, 2001, 66, 487–494.
  • [16] MANSILLA H.D., BRAVO C., FERREYRA R., LITTER M.I., JARDIM W.F., LIZAMA C., FREER J., FERNÁNDEZ J., Photocatalytic EDTA degradation on suspended and immobilized TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 188–194.
  • [17] TRYBA B., Immobilization of TiO2 and Fe–C–TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water, Journal of Hazardous Materials, 2008, 151, 623–627.
  • [18] GOETZ V., CAMBON J.P., SACCO D., PLANTARD G., Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized TiO2, Chemical Engineering and Processing, 2009, 48, 532–537.
  • [19] ROY A.M., DE G.C., SASMAL N., BHATTACHARYYA S.S., Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurements, International Journal of Hydrogen Energy, 1995, 20, 627–630.
  • [20] MACYK W., BURGETH G., KISCH H., Photoelectrochemical properties of platinium(IV) chloride surface modified TiO2, Photochemical and Photobiological Sciences, 2003, 2, 322–328.
  • [21] JANUS M., TRYBA B., INAGAKI M., MORAWSKI A.W., New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2, Applied Catalysis B: Environmental, 2004, 52, 61–67.
  • [22] JANUS M., KUSIAK E., CHOINA J., MORAWSKI A.W., Lifetime of carbon-modified TiO2 photocatalysts under UV light irradiation, Catalysis Letters, 2009, 131, 506–511.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0011-0111
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.