PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability study of the mine overburden dumps slope: a micromechanical approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Discontinuum based particle-particle interaction mechanics is applied to the modeling of waste composed of fragmented rock and loose soil produced at the opencast coal mines. The distinct element method considered the discrete nature of geomaterials and represented them with bonded and unbonded matrix assembly. The overburden dump material is studied with laboratory test of synthetic material, similar to physical testing and calibration done through that. The next part focused on the static stability characteristics of the overburden dumps with heavily joint set and performance study was done on the ability to model it. The location of sliding is visualized via numerical code. The last part deals with the performance characteristics of the overburden dumps under seismic loads. The history of the responses at monitoring points is studied for interpretation of the dynamic behavior of the overburden dump mass. The responses are used to determine the natural frequency of the overburden dumps, damping fraction and the phase difference at two sides of the dumps mass. The results obtained match well with fundamental concept of the vibration theory.
Słowa kluczowe
Wydawca
Rocznik
Strony
35--57
Opis fizyczny
bibliogr. 33 poz
Twórcy
autor
  • Indian Institute of Technology, Kharagpur, India
Bibliografia
  • [1] BIENIAWSKI, Z.T., Engineering rock mass classifications, Wiley, New York, 1989, p. 251.
  • [2] CHUHAN Z., PEKAU O.A., FENG J., GUANGLUN W., Application of distinct element method in dynamic analysis of high rock slopes and blocky structures, Soil Dynamics and Earthquake Engineering, 16(6), 1997, 385–394.
  • [3] CUNDAL P.A., HART R.D., Numerical modeling of discontinua, Comprehensive Rock Engineering, Ch. Fairhurst (ed.), Vol. 2, 1993, 231–243.
  • [4] DESAI C.S., Mechanics of Materials and Interfaces: The Disturbed State Concept, CRC Press UK, London, 2001, p. 698.
  • [5] DOLEZALOVA M., KORAN P., Micromechanical modeling of a dump material, International Journal of Geomechanics, 2(1), 2002, 47–74.
  • [6] DOWDING C.H., Blast vibration monitoring and control, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1985, p. 297.
  • [7] DOWDING C.H., BECK W.K., ATMATZIDIS D.K., Blast vibration implications of cyclic shear behavior of model plaster panels, ASTM Geotechnical Testing Journal, 3(2), 1980, 81–90.
  • [8] FEDA J., Mechanics of Particulate Materials. The Principles, Elsevier-Academia, Amsterdam, 1982, p. 448.
  • [9] FEDA J., Fragmentary clay – a difficult waste material, Engineering Geology, 51, 1998, 77–88.
  • [10] GIANI G.P., Rock slope stability analysis, Rotterdam, A.A Balkema Publishers, 1992, p. 361.
  • [11] HATZOR Y.H., ARZI A.A., ZASLAVSKY Y., SHAPIRA A., Dynamic stability analysis of jointed rock slopes using the DDA method: King Herod’s Palace, Masada, Israel, International Journal Rock Mechanics and Mining Sciences, 41(5), 2004, 813–832.
  • [12] HUDSON J.A., HARRISON J.P., Engineering rock mechanics – an introduction to the principles, Oxford, Pergamon, 1997, p. 444.
  • [13] JAEGER J., COOK N.G.W., Fundamentals of rock mechanics, London, Chapman & Hall, 1979, p. 593.
  • [14] JENSEN R.P., BOSSCHER J.P., PLESHA M.E., EDIL T.B., DEM simulations of granular media-structure interface: effects of surface roughness and particle shape, Int. Journal on Num. and Analytical Methods in Geomechanics, 23(6), 1999, 531–548.
  • [15] KAYAMA T., JING L., Effects of model scale and particle size on micro-mechanical properties and failure process of rocks – A particle mechanics approach, Engineering Analysis with Boundary Elements, 31(5), 2007, 458–472.
  • [16] KIM W.-B., YANG H.S., Discrete element analysis on failure behavior of jointed rock slope, Geosystem Engineering, 8(2), 2005, 51–56.
  • [17] KNIJNENBURG J., Influence of vibrations on particle flow behaviour, Master Thesis, Delft University of Technology, Netherlands, 2008.
  • [18] KONER R., CHAKRAVARTY D., SINGH A.K., CHAKRAVARTY K., Application of numerical methods for assessment of slope stability, MineTech, 29(1), 2008, 3–10.
  • [19] LIU S.H., SUN D.A., WANG Y., Numerical study of soil collapse behavior by discrete element modeling, Computer and Geotechnics, 30(5), 2003, 399–408.
  • [20] LIU Y.Q., LI H.B., ZHAO J., LI J.R., ZHOU Q.C., UDEC simulation for dynamic response of a rock slope subject to explosions, International Journal Rock Mechanics and Mining Sciences, 41(3), CD-ROM, Paper 2B 23-SINOROCK 2004 Symposium, 2004, p. 6.
  • [21] LYSMER J., KUHLEMEYER R.L., Finite Dynamic Model for Infinite Media, J. Eng. Mech., 95(EM4), 1969, 859–877.
  • [22] MASSON S., MARTINEZ J., Multiscale simulations of the mechanical behaviour of an ensiled granular material, Mechanics of Cohesive Frictional Materials, 5(6), 2000, 425–442.
  • [23] NEWMARK N.M., HALL W.J., Earthquake spectra and design, Earthquake Engineering Research Institute, Berkeley, California, 1982, p. 103.
  • [24] PANDE G.N., BEER G., WILLIAMS J.R., Numerical Methods in Rock Mechanics, John Wiley & Sons Ltd., New York, 1990, p. 327.
  • [25] PFC2D, Particle Flow in 2 Dimensions, Version 3.1 (2006) User Manual, ITASCA Consulting Group, Inc., Minneapolis, Minnesota.
  • [26] PRIEST S.D., Discontinuity analysis for rock engineering, Chapman & Hall, London, 1993, p. 473.
  • [27] SAKAKIBARA T., UJIHIRA M., SUZUKI K., Numerical study on the cause of a slope failure at a gravel pit using PFC and FLAC, Proceedings of the 2nd International PFC Symposium, 28–29 October 2004, Kyoto, Japan, Z. Shimizu, R.D. Hart, P.A. Cundall (eds.), London, UK, Taylor & Francis Routledge, 1st ed., 2004, 51–56.
  • ]28] THOMPSON W.T., Vibration theory and applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, 43–44.
  • [29] THORTON C., Microscopic approach contributions to constitutive modeling, Constitutive Modeling of Granular Materials, D. Kolymbas (ed.), Springer-Verlag, 2000.
  • [30] THORTON C., SUN G., Numerical simulation of general 3D quasi-static shear deformation of granular media, Numerical Methods in Geotechnical Engineering, Smith (ed.), Balkema, Rotterdam, 1994, 143–148.
  • [31] UDEC (Universal Distinct Element Code), Version 4.0 (2006) User Manual, ITASCA Consulting Group, Inc., Minneapolis, Minnesota.
  • [32] WANG C., TANNANT D.D., LILLY P.A., Numerical analysis of the stability of heavily jointed rock slope using PFC2D, International Journal Rock Mechanics and Mining Sciences, 40(3), 2003, 415–424.
  • [33] XIE Y.-S., ZHAO Y.-S., Numerical simulation of the top coal caving process using the discrete element method, International Journal Rock Mechanics and Mining Sciences, 46(6), 2009, 983–991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0011-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.