PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trace elements in a valley of upper river narew and its selected tributaries, NE Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The catchment of the upper river Narew (NE Poland) was studied. Investigations were carried out in March, May, August, and October 2006. The study was aimed at evaluating total cadmium, lead, zinc, chromium, nickel, and cobalt content as well as their forms dissolved in bottom sediments of the upper river Narew and its selected tributaries. Also the attempts to recognize the influence of the catchment management on concentration of the elements studied in bottom sediments of the upper river Narew were undertaken by using the neural networks. Metal concentrations were determined by means of AAS technique. Human economic and household activities, along with a surface runoff, are responsible for the metals deposited in sediments of the rivers under analysis, which was confirmed by statistical computations. The sediments were described as not contaminated (I class) with nickel, zinc, copper, chromium, cobalt, and lead, whereas cadmium concentration slightly exceeded that typical of the I geochemical class in about 20% of the samples studied. Contents of other elements under investigation occurred at the level of geochemical background. The highest metal concentrations were recorded in the alluvia of the river Horodnianka that flows through the area situated near municipal waste dump in Hryniewicze. Studies using artificial neural networks gave the opportunity and efficiency to predict the heavy metals contents in bottom sediments of the river Narew and allowed us to assess its efficiency taking into account many parameters at the same time.
Rocznik
Strony
259--278
Opis fizyczny
bibliogr. 67 poz.
Twórcy
  • Technical University in Białystok, ul. Wiejska 45A, 15-333 Białystok
Bibliografia
  • [1] ABRAHART R.J., WHITE S.M., Modelling sediment transfer in Malawi: comparing backpropagation neural network solutions against a multiple linear regression benchmark using small data sets, Physics and Chemistry of the Earth, 2001, Part B, 26(1), 19–24.
  • [2] AGARWAL A., SINGH R.D., MISHRA S.K., BHUNYA P.K., ANN-based sediment yield models for Vamsadhara river basin (India), Water S.A., 2005, 31(1), 95–100.
  • [3] AHMED EL NEMR, AZZA KHALED, AMANY EL SIKAILY, Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf, Environmental Monitoring and Assessment, 2006, 118, 89–112.
  • [4] AHMED S., HUSSAIN M., ABDERRAHMAN W., Using multivariate factor analysis to assess surface/ logged water quality and source of contamination at a large irrigation project at Al Fadhli, Eastern Province, Saudi Arabia. Bull. Eng. Geol. Env., 2005, 64, 315–232.
  • [5] ALP M., Determination of river’s suspended sediment load by black box model, PhD Thesis, Istanbul Technical University, 2003, 188 (in Turkish).
  • [6] ASTEL A., MAZERSKI J., POLKOWSKA Z., NAMIESNIK J., Application of PCA and time series analysis in studies of precipitation in Tricity (Poland), Adv. Environ. Res., 2004, 8, 337–349.
  • [7] BISHOP C., Neural networks for pattern recognition, Oxford University Press, 1995, 504.
  • [8] BOJAKOWSKA I., SOKOŁOWSKA G., Geochemiczne klasy czystości osadów wodnych, Przeg.Geolog., 1998, 46, 1, 49–54.
  • [9] BOJAKOWSKA I., Kryteria oceny zanieczyszczenia osadów wodnych, Prz. Geol., 2001, Vol. 49, No. 3, 213–218.
  • [10] BUBB J., RUDD T., LESTER J.N., Distribution of heavy metals in the River Yare and its associated broads. I. Mercury and Methylmercury, Sci. Total Environ., 1991, 102, 147–168.
  • [11] CARRAL E., VILLARES R., PUENTE X., CARBALLEIRA A., Characterization of sediment metal pollution in Galician Estuaries (NW Spain), Proceedings of the 6th International Conference of Environmental Contamination’, Delphi, Greece, October, 1994, 281–283,
  • [12] CIGIZOGLU H.K., Filling missing suspended sediment data by artificial neural networks, [in:] Hassanizadeh S.M., Schotting R.J., Gray W.G., Pinder G.F. (eds.), Proceedings of the XIV International Conference on Computational Methods in Water Resources, Delft, The Netherlands, 23–28 June 2002, 1645–1652 (Elsevier Publ., No. 47).
  • [13] CIGIZOGLU H.K., Suspended sediment estimation and forecasting using artificial neural networks, Turkish Journal of Engineering and Environmental Sciences, 2002b, 26(1), 16–26.
  • [14] CIGIZOGLU H.K., Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves, Turkish Journal of Engineering and Environmental Sciences, 2002c, 26(1), 27–36.
  • [15] CIGIZOGLU H.K., Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons, Advances in Water Resources, 2004, 27, 185–195.
  • [16] CIGIZOGLU H.K., ALP M., Suspended sediment forecasting by artificial neural networks using hydro meteorological data, Proceedings of the World Water & Environmental Resources Congress, 2003, Philadelphia, Pennsylvania, USA, 23–26 June 2003, doi:10.1061/40685(2003)173.
  • [17] COBELO-GARCIA A., PREGO R., Heavy metal sedimentary record in a Galician Ria (NWSpain): Background values and recent contamination, Mar. Pollut. Bull., 2003, 46, 1253–1262.
  • [18] DEMBSKA G., BOLAŁEK J., AFTANAS B., GUZ W., WIŚNIEWSKI S., Udział formy labilnej i całkowitej metali ciężkich w osadach z Portu Gdańskiego. Problemy analityczne badań osadów dennych, Sympozjum Naukowe Komitetu Chemii Analitycznej PAN, Komisja Analizy Wody, Poznań, 2001, 83–97.
  • [19] EINAX J.W., ZWANZIGER H.W., GEISS S., Chemometrics in Environmental Analysis, Wiley, Weinheim, 1997.
  • [20] EINAX J.W., TRUCKENBRODT D., KAMPE O., River Pollution Data Interpreted of Chemometrics, Michrochem. J., 1998, 58. 315–324.
  • [21] EL-DIN AG, SMITH DW., A neural networkmodel to predict the wastewater inflow incorporating rainfall events, Water Res., 2002, 36, 1115–26.
  • [22] EL-SIKAILY A., KHALED A., EL NEMR A., Heavy metals monitoring using bivalves from Mediterranean Sea and Red Sea, Environ. Monit. Assess., 2004, 98, 41–58.
  • [23] EVANS C.D., DAVIES T.D., WIGINGTON JR P.J., TRANTER M., KRETSCHIER W.A., Use od factor analysis to investigate processes controlling the chemical composition of four streams in Adirindack Mountains, New York. J. Hydrol., 1996, 185, 297–316.
  • [24] FÖRSTNERA U., Umweltchemische Analyse und Bewertung von matallkontaminierten Schlämmen, Chmiker Zeitung, 1981, 105, No. 6, 165–175.
  • [25] FAUSETT L., Fundamentals of neural networks, Prentice Hall, New York, 1994, 469.
  • [26] HAZAKI Y., MATSUDA R., ITO K., MAEDA M., IMAI K., Anal. Chim. Acta., 2001, 441, 243–248.
  • [27] HELIOS-RYBICKA E., Rola minerałów ilastych w wiązaniu metali ciężkich przez osady rzeczne górnej Wisły,. Zesz. Nauk. AGH, Geologia, 1986, 1050, 32, 1–123.
  • [28] HELIOS-RYBICKA E., WARDAS M., ADAMIEC E., STRZEBIŃSKA M., Ocena zanieczyszczenia rzeki Odry I Wisły – przeszłość i teraźniejszość, Geologia, 2001, 27, 659–671.
  • [29] Geochemical Atlas of Europe, foregs http://www.gtk.fi/publ/foregsatlas/
  • [30] JAIN S.K., Development of integrated sediment rating curves using ANNs, Journal of Hydraulic Engineering, 2001, 127(1), 30–37.
  • [31] KABATA-PENDIAS A., PENDIAS H., Biogeochemia pierwiastków śladowych, PWN, Warszawa, 1999, 364.
  • [32] KISI O., Multi-layer perceptrons with Levenberge Marquardt training algorithm for suspended sediment concentration prediction and estimation, Hydrological Sciences Journal, 2004, 49(6), 1025–1040.
  • [33] KRAFT J., KOWALIK C., EINAX J.W., Statistical evaluation of river pollution data Exemplified by the Elbe river system, [in:] Parczewski A. (ed.), Chemometrics. Methods and Applications, II Conference, 16–19 October 2003. Zakopane, Poland, 40–49.
  • [34] KUNWAR P.S., AMRITA M., SARITA S., VINOD K.S., RAMESH C.M., Estimation of source of heavy metal contamination in sediments of Gomti river (India) using principal component analysis, Water, Air, and Soil Pollution, 2005, 166, 321–341
  • [35] LADD S.C., MARCUS W.A., CHERRY S., Differences in trace metal concentrations among fluvial morphologic units and implications for sampling, Springer-Verlag, Environmental Geology, 1998, 36, 3–4, 259–270.
  • [36] LIS J., PASIECZNA A., Atlas geochemiczny Polski w skali 1: 2 500 000, Państw. Inst. Geol., Warszawa, 1995, 72.
  • [37] ŁOZOWICKA-STUPICKA T., Ocena ryzyka i zagrożeń w złożonych systemach człowiek–obiekt techniczny– środowisko, Monografia 270, Politechnika Krakowska, 2000.
  • [38]MATSCHULLA J., OTTENSTEI R., REIMANN C., Geochemical background – can we calculate it? Springer-Verlag, Environmental Geology, 2000, 39(9), July, 990–1000.
  • [39]MERRITT W.S., LETCHER R.A., JAKEMAN A.J., A review of erosion and sediment transport models, Environmental Modelling & Software, 2003, 18(8–9), 761–799.
  • [40]MÜLLER G., Die Schwermettallbelastung der Sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme, Chemiker Zeitung, Chemie, Technische Chemie, Chemiewirtschaft, 1981, 105, 6, 157–164
  • [41] NAGY H.M., WATANABE K., HIRANO M., Prediction of sediment load concentration in rivers using artificial neural network model, Journal of Hydraulic Engineering, 2002, 128(6), 588–595.
  • [42] OSMULSKA-MRÓZ B., SADKOWSKI K., Zanieczyszczenie spływów opadowych z dróg szybkiego ruchu w Polsce, Ochr. Środ. (IOŚ), 1991, No. 2, Warszawa, 73–84.
  • [43] PARAFINIUK J., BOJAKOWSKA I., MALECKA K., Procesy samooczyszczania się koryta rzeki Pisi (Zachodnie Mazowieckie) na podstawie zmian zawartości wybranych metali ciężkich, Prz. Geol., 2005, Vol. 53, No. 7, 609–614.
  • [44] PATTERSON D., Artificial Neural Networks, Prentice Hall, Singapore, 1996, 477.
  • [45] PUCKETT L.J., BRICKER O.P., Factors controlling the major ion chemistry of streams in the Blue Ridge Valley and physiographic provinces of Virginia and Maryland, Hydrol. Proces., 1992, 6, 79– 98.
  • [46] RUIZ F., GONZÁLEZ-REGALADO M., BORREGO J., MORALES J.A., PENDÓN J.G., MUNOZ J.M., Stratigraphic sequence elemental concentrations and heavy metal pollution in Holocene sediments from the Tinto-Odiel Estuary, south-western Spain, Springer-Verlag, Environmental Geology, 1998, 34(4), June 1998, 270–278.
  • [47] SIEPAK J., Metody pobierania i przygotowywania próbek wód, ścieków i osadów do analiz fizykochemicznych, praca zbiorowa, UAM, Poznań, 1997, 118.
  • [48] SIMEONOV V., EINAX J.W., STANIMIROVA I., KRAFT J., Environmetric modeling and interpretation of river water monitoring data, Anal. Bioanal. Chem., 2002, 374, 898–905.
  • [49] SIMEONOV V., SIMEONOVA P., TSITOURIDOU R., Chemometric quality assessment of surface waters: two case studies, Chemical and Engineering, Ecology, 2004, 11(6), 449–469.
  • [50] SIMEONOVA P., SIMEONOV V., ANDREEV G., Environmetric analysis of the Struma River water quality, Central European Journal of Chemistry, 2003, 2, 121–126.
  • [51] SINGH M., MÜLLER G., SINGH I.B., Heavy metals in freshly deposited stream sediments of rivers associated with urbanization of the Ganaga Plain, India, Water Air Soil Pollut., 2002, 141, 35–54.
  • [52] SKORBILOWICZ E., Lead and zinc in grain fractions of bottom sediment from selected rivers, Polish J. of Environ. Stud., 2007, Vol. 16, No. 2A, 415–421.
  • [53] SNAPE I., SCOULLER R.C., STARK S.C., STARK J., RIDDLE M.J., GORE D.B., Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments, Chemosphere, 57, 491–504.
  • [54] TADEUSIEWICZ R.. Sieci neuronowe, Warszawa, Akad. Ofic. Wydaw., 1993, 265.
  • [55] TADEUSIEWICZ R., Elementarne wprowadzenie do techniki sieci neuronowych z przykładowymi programami, Warszawa, Akad. Ofic. Wydaw., PLJ, 1998, 312.
  • [56] TAM N.F.Y., WONG Y.S., Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps, Environ. Pollut., 2000, 110, 195–205.
  • [57] TAYFUR G., Artificial neural networks for sheet sediment transport, Hydrological Sciences Journal, 2002, 47(6), 879–892.
  • [58] THALMANN F, SCHERMANN O., SCHROLL E., HAUSBERGER G., Geochemischer Atlas Der Republik Österreich 1:1 000 000, Geologische Bundesanstalt, Wien, 1989.
  • [59] TSAIL J., YU K.C., HO S.T., Correlation of iron/iron oxides and trace heavy metals in sediments of five rivers, in southern Taiwan, Diffuse Pollution Conference, Dublin, 2003, 14–25.
  • [60] TUREKIAN K.K., WEDEPHOL K.H., Distribution of the elements in some major units of the earth’s crust, Bull. Geol. Soc. America, 1961, 72, 175–184.
  • [61] VAN DEN BERG G.A., LOCH J.P.G., VAN DER HEIJDT L.M., ZWOLSMAN J.J.G., Mobilisation of heavy metals in contaminated sediments in the river Meuse, The Netherlands, Water Air Soil Pollut., 1999, 116(3–4), 567–586.
  • [62] VILLARES R., PUENTE X., CARBALLEIRA A., Heavy metals in sandy sediments of the Rias Baixas (NW Spain), Environ. Monit. Assess., 2003, 83, 129–144.
  • [63]WARDAS M., Zanieczyszczenia kadmem rzecznych osadów zlewni górnej Wisły, Kadm w środowiskuproblemy i metodyczne, Wydawnictwo Polskiej Akademii Nauk, Zesz.Nauk. „Człowiek i Środowisko”, 2000, (26), 157–168.
  • [64]WARDAS M., Badanie metali ciężkich w osadach rzecznych w rejonie Polski południowej, Problemy analityczne badań osadów dennych, Sympozjum Naukowe Komitetu Chemii Analitycznej PAN, Komisja Analizy Wody, Poznań, 2001, 64–74.
  • [65]WIŚNIOWSKA-KIELIAN B., NIEMIEC M., Heavy metals contents in sediments of selected tributaries of river Dunajec, J. Elementom., 2005, 10(2), 435–443.
  • [66] XIANGDONG L.I., ZHENGUOSHEN ONYX W.H., WAI, YORK-SHEANG L.I., Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary, Mar. Pollut. Bull., 2001, 42(3), 215–223.
  • [67] YITIAN L., GU R.R., Modeling flow and sediment transport in a river system using an artificial neural network, Environmental Management, 2003, 31 (1), 122–134, Environmental Monitoring and Assessment, 2006, 118, 89–112.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0009-0100
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.