Identyfikatory
Warianty tytułu
Separation of surface active agents from water solutions using polymer ultrafiltration membranes
Języki publikacji
Abstrakty
Celem przeprowadzonych badań było określenie skuteczności polimerowych membran ultrafiltracyjnych w usuwaniu substancji powierzchniowo czynnych z roztworów wodnych w zakresie stężeń poniżej i powyżej krytycznego stężenia micelizacji. Zbadano również wpływ obecności soli mineralnych będących podstawowym wypełniaczem kompozycji detergentowych na skuteczność eliminacji SPC z roztworów wodnych w procesie ultrafiltracji.
Surface active agents, also called surfactants, are amphiphilic compounds that contain both a hydrophobic and a hydrophilic portion. In aqueous solutions, surfactant monomers aggregate into structures called micelles with hydrophobic groups in the interior of the micellar structures. The minimum concentration at which micellization occurs is called the critical micelle concentration (CMC). At higher concentrations than CMC, monomers and micelles coexist in equilibrium. Surface active agents are used in large quantities in household products, detergent formulations, industrial application and as additives to improve the effectiveness of agrochemicals. The consumption of surfactants for both industrial and domestic purpose has resulted in a worldwide production of approximately 17 million tonnes in 2000 (including soap), with expected future growth rates of 3-4% per year globally and of 1.5-2.0% in the EU [19]. As a consequence of their widespread use surfactants may persist in wastewater treatment systems at relatively high concentrations [13, 18]. In order to meet legislative requirements and to discharge effluents into communal systems or directly into the river an efficient treatment process must be applied. Due to the diversity of surfactants and their physico-chemical properties it is difficult to develop a single and an effective treatment method of detergent wastewater. From among techniques which were studied in this research area [3, 5, 10, 14, 16] can be listed biodegradation, coagulation, foaming, oxidation, adsorption, ion-exchange and membrane processes. Numerous reports indicate that membrane technology is emerging as one of the leading contenders in the recovery of water and concentrated products from the rinsing waters used in the batch production of surfactants and detergents or as a polishing step before the effluents are discharged. The aim of the study was to evaluate the removal efficiency of anionic surfactant from water solutions by means of ultrafiltration. Polymer membranes made of polyethersulfone and cellulose with molecular weight cut-off of 5, 10 and 30 kDa were used. Both transport and separation properties of the polymers were tested for surfactant solutions in concentration range of 0.1-3.0 CMC in a presence of mineral salt (NaCl). It was found that the surfactant concentration was a crucial parameter determining effectiveness of ultrafiltration process. With the increase in surfactant concentration, the retention coefficients and hydraulic performance decreased, with a rise around the CMC value. The UP005 membrane was found to be very effective in anionic surfactant removal in a wide range of concentrations - the retention coefficient amounted to 82-90%. During the permeation experiments in the presence of mineral salt, the increase in retention coefficient was observed for a given dose of mineral salt along with the increase in surfactant concentration in the feed
Wydawca
Czasopismo
Rocznik
Tom
Strony
593--604
Opis fizyczny
bibliogr. 24 poz.
Twórcy
autor
- Politechnika Wrocławska
Bibliografia
- 1. Abbot N.L., MacKay R.A.: Surfactant applications. Current Opinion in Colloid & Interface Science, 4, 323-324, 1999.
- 2. Archer A.C., Mendes A.M., Boaventura R.A.R.: Separation of an anionic surfactant by nanofiltration. Environ. Sci. Techn., 33, 2758-2764, 1999.
- 3. Boonyasuwat S., Chavadej S., Malakul P., Scamehorn J.F.: Anionic and cationic surfactant recovery from water using a multistage foam fractionator. Chem. Eng. J. 93, 241-252, 2003.
- 4. Dutkiewicz E., Jakubowska A.: Effect of electrolytes on the physicochemical behaviour of sodium dodecyl sulphate micelles. Colloid. Polym. Sci., 280, 1009- 1014, 2002.
- 5. Federle T.W., Itrich N.R.: Fate of free and linear alcohol-ethoxylate-derived fatty alcohols in activated sludge. Ecotoxicol. Environm. Safety, 64, 30-41, 2006.
- 6. Fernández E., Benito J.M., Pazos C., Coca J.: Ceramic membrane ultrafiltration of anionic and nonionic surfactant solutions. J. Membr. Sci., 246, 1-6, 2005.
- 7. Forstmeier M., Goers B., Wozny G.: UF/NF treatment of rinsing waters in a liquid detergent production plant. Desalination, 149, 175-177, 2002.
- 8. Goers B., Mey J., Wozny G.: Optimised product and water recovery from batchproduction rinsing waters. Waste Management, 20, 651-658, 2000.
- 9. Gu L., Wang B., Ma H., Kong W.: Catalytic oxidation of anionic surfactants by electrochemical oxidation with CuO–Co2O3–PO4 3- modified kaolin. J. Hazardous Materials B, 137, 842-848, 2006.
- 10. Hua Wu S., Pendleton P.: Adsorption of Anionic Surfactant by Activated Carbon: Effect of Surface Chemistry, Ionic Strength, and Hydrophobicity. J. Colloid Interf. Sci., 243, 306-315, 2001.
- 11. Katalog membran firmy Nadir®
- 12. Kong W., Wang B., Ma H., Gu L.: Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes. J. Hazard Materials B, 137, 1532-1537, 2006.
- 13. Kowalska I., Kabsch-Korbutowicz M., Majewska-Nowak K., Pietraszek M.: Removal of detergents from industrial wastewater in ultrafitration process. Environmental Protection Engineering, 31, 207-219, 2005.
- 14. Mahvi A.H., Maleki B.: Removal of anionic surfactants in detergent wastewater by chemical coagulation. Pakistan J. Biol. Sci., 7, 2222-2226, 2004.
- 15. Mezzanotte V., Bolzacchini E., Orlandi M., Rozzi A., Rullo S.: Anaerobic removal of linear alcohol ethoxylates. Bioresource Technol., 82, 151-156, 2002.
- 16. Mizoguchi K., Fukui K., Yanagishita H., Nakane T., Nakata T.: Ultrafiltration behavior of a new type of non-ionic surfactant around the CMC. J. Membrane Sci., 208, 285-288, 2002.
- 17. Mulligan C.N., Yong R.N., Gibbs B.F.: Surfactant enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371-380, 2001.
- 18. Papadopoulos A., Savvides C., Loizidis M., Haralambous K.J., Loizidou M.: An assessment of the quality and treatment of detergent wastewater. Water Science and Technology, 36, 377-381, 1997.
- 19. Patel M.: Surfactant based on renewable raw materials. Carbon dioxide reduction potential and policies and measures for the European Union. Journal of Industrial Ecology, 7, 46-62, 2004.
- 20. Purakayastha P.D., Pal A., Bandyopadhyay M.: Adsorbent selection for anionic surfactant removal from water. Ind. J. Chem. Technol., 12, 281-284, 2005.
- 21. Sanz J., Lombrana J.I., De Luis A.M., Ortueta M., Varona F.: Microwave and Fenton’s reagent oxidation of wastewater. Environ. Chem. Lett., 1, 45-50, 2003.
- 22. Tosik R., Wiktorowski S., Janio K.: Neutralization of laundry wastewater by coagulation. Environmental Science Research. 51, 251-258, 1996.
- 23. Wagner S., Schink B.: Anaerobic of nonionic and anionic surfactants in enrichment cultures and fixed-bed reactors. Water Research, 21, 615-622, 1987.
- 24. Zieliński R.: Surfaktanty. Towaroznawcze i ekologiczne aspekty ich stosowania. Wydawnictwo Akademii Ekonomicznej w Poznaniu. Poznań 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0009-0042