PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lifetime prediction in creep-fatigue environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The creep-fatigue interaction has been studied and innovative mathematical models are proposed to predict the operating life of aircraft components, specifically gas turbine blades subject to creep-fatigue at high temperatures. The historical evolution of the creep-fatigue lifetime prediction is given in order to place the present study in the context. A literature review of the life estimation under creep-fatigue environment is presented.
Słowa kluczowe
Wydawca
Rocznik
Strony
563--584
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
autor
autor
Bibliografia
  • [1] OHTANI R., KITAMURA T., TSUTSUMI M., MIKI H., Proc. Asian Pacific Conf. Fracture and Strength, Tsuchiura (Japan), 1993, pp. 151–156.
  • [2] EWALD J., SHENG S., Mater. High Temp., 15 (2003), 323.
  • [3] GRANACHER J., MAO T.S., FISCHER R., Mater. High Temp., 15 (2003), 331.
  • [4] MAILE K., KLENK A., GRANACHER J., SCHELLENBERG G., TRAMER M., Key Eng. Mater., 171-174 (2000), 85.
  • [5] KOTEKAZAWA R., Fatigue Fract. Eng. Mater. Struct., 16 (1993), 619.
  • [6] MICHEL D.J., THOMPSON A.W., Fatigue, 87 (1987), 1057.
  • [7] WANG S., CHI S., GENG G., Acta Metal. Sin., 20 (1984), 83.
  • [8] SADANANDA K., SHAHINIAN P., Creep-Fatigue Crack Growth, Appl. Sci. Publ., London, 1981, pp. 109-195.
  • [9] SHAHINIAN P., SADANANDA K., ASME, New York, 1976, pp. 365-390.
  • [10] GENG M. F., Mater. Sci. Eng., 257 (1998), 250.
  • [11] MARIE S., DELAVAL C., Intl. J. Press. Vess. Piping, 78 (2001), 847.
  • [12] GEMMA A.E., Eng. Fract. Mech., 11 (1979), 763.
  • [13] BRINKMAN C.R., KORTH G.E., BOBBINS R.R., Nucl. Techn., 16 (1972), 297.
  • [14] YAGI K., KUBO K., TANAKA C., J. Japan Soc. Mater. Sci., 28 (1979), 400.
  • [15] REIS E.E, RYDER R.H., Creep-Fatigue Damage in OFHC Coolant Tubes for Plasma Facing Components, Proc. 19th Symposium on Fusion Technology, 1996.
  • [16] BELLOWS R.S., TIEN J.K., Scripta Metall., 21 (1987), 653.
  • [17] RICHARD-FRANDSEN R., TIEN J.K., Scripta Metall., 18 (1984), 731.
  • [18] DUGGAN T.V., SABIN P., The Effect of Geometry on Crack Formation, Advances in Research on the Strength and Fracture of Materials, Proc. 4th International Conference on Fracture, New York, 1978, p. 285.
  • [19] BERMAN I., GANGADHARAN A.C., JAISINGH G.H., GUPTA G.D., J. Press. Vess. Techn., 98 (1976), 75.
  • [20] PARK Y.S., NAM S.W., AND HWANG S.K., Mater. Lett., 53 (2002), 392.
  • [21] HARDT, MAIER H.J, CHRIST H.J., Int. J. Fatigue, 21 (1999), 779.
  • [22] SALAM I., TAUQIR A., KHAN A.Q., Engineering Failure Analysis, 9 (2002), 335.
  • [23] BESTWICK R.D.W., BUCKTHORPE D.E., Fatigue Fract. Eng. Mater. Struct., 17 (1994), 849.
  • [24] HOLDSWORTH S.R., Nucl. Eng. Des., 188 (1999), 289.
  • [25] ZHANG G., RICHTER B., Fatigue Fract. Eng. Mater. Struct., 23 (2002), 499.
  • [26] LEMAITRE J., PLUMTREE A., Trans. ASME, 101 (1979), 284.
  • [27] SHI X.Q., WANG Z.P., ZHOU W., PANG H.L., YANG Q.J., J. Electr. Pack., 124 (2002), 850.
  • [28] RUBESA D., Lifetime Prediction and Constitutive Modeling for Creep-Fatigue Interaction, Bruder- Borntraeger, Berlin, 1996, p. 140.
  • [29] COLOMBO F., MASSEREY B., MAZZA E., HOLDSWORTH S., Service-Like Thermo-Mechanical Fatigue Tester for the Lifetime Assessment of Turbine Components, 9th Int. Conf. Mechanical Behavior of Materials, Geneva, Switzerland, 2003.
  • [30] HOLDSWORTH S.R., MAZZA E., AND JUNG A., Creep-Fatigue Damage Development during Service-Cycle Thermo-Mechanical Fatigue Tests of ICrMoV Rotor Steel, 9th Int. Conf. Mechanical Behavior of Materials, Geneva, Switzerland, 2003.
  • [31] CHARKALUK E., CONSTANTINESCU A., Mater. High Temp., 17 (2000), 373.
  • [32] YAO Q., QU J., WU S.X., J. Electr. Pack., 121 (1999), 196.
  • [33] JEONG C.Y., CHOI B.G., NAM S.W., Mater. Lett., 49 (2001), 20.
  • [34] CHEN L.J., YAO G., TIAN J.F., WANG Z.G., ZHAO H.Y., Int. J. Fatigue, 20 (1998), 543.
  • [35] TONG J., DALBY S., BYRNE J., HENDERSON M.B., HARDY M.C., Int. J. Fatigue, 23 (2001), 897.
  • [36] COFFINE L.F., Fatigue Elev. Temp., ASTM.520, 1973, 5-34.
  • [37] AGHION E., BAMBERGER M., BERKOVITS A., Israel J. Techn., 24 (1988), 225.
  • [38] OKADA M., TSUTSUMI M., KITAMURA T., OHTANI R., Fatigue Fract. Eng. Mater. Struct., 21 (1988), 751.
  • [39] VENKITESWARAN P. K., FERGUSON D. C., AND TAPLIN D.M.R., Fatigue at Elevated Temperatures, Proceedings of the Symposium, Philadelphia, PA, ASTM, 462–472, 1973.
  • [40] OHNAMI M., SAKANE M., Bull. Japan Soc. Mech. Eng., 21 (1978), 547.
  • [41] KOBURGER C.W, DUQUETTE D.J, STOLOFF N.S., Metall. Trans. A, Phys. Metall. Mater. Sci., 11 A (1980), 1107.
  • [42] PLUMTREE A., PERSSON N.G., Creep-Fatigue Interaction in an Austenitic Fe-Ni-Cr Alloy at 600 °C, Advances in Research on the Strength and Fracture of Materials, Proc. 4th Int. Conf. Fracture, Pergamon Press, New York, 1978, pp. 821–829.
  • [43] OHTANI R., KITAMURA T., ZHOU W., Int. J. Fatigue, 19 (1997), 185.
  • [44] SRINIVASAN V.S., NAGESHA A., VALSAN M., BHANU SANKARA RAO K., MANNAN S.L. SASTRY D.H., Int. J. Press. Vess. Piping, 76 (1999), 863.
  • [45] KORDISCH T., NOWACK H., Fatigue Fract. Eng. Mater. Struct., 21 (1998), 47.
  • [46] MASAKAZU O., HIROMICHI T., JUNNOSUKE M., Mater. Sci. Res. Int., 3 (1997), 56.
  • [47] MICHEL D.J., SMITH H.H., Acta Metall., 28 (1980), 999.
  • [48] WAREING J., TOMKINS B., Creep-Fatigue Interaction Failure in Type 316 Stainless Steel, Advances in Research on the Strength and Fracture of Mater., Proc. 4th Int. Conf. Fracture, New York, Pergamon Press, 1978, 81.
  • [49] MAIYA P.S., MAJUMDAR S., Metallurgical Transactions A -Physical Metallurgy and Mater. Sci., 8A (1977), 1651.
  • [50] WAREING J., Metall. Trans. A, 8A (1977), 711.
  • [51] PLUMTREE A., Metal Sci., 11 (1977), 425.
  • [52] MILLER A., ASMS, Conf. Micromechanical Modeling of Flowand Fracture, ASME, Transactions, Series H- J. Eng. Mater. Techn., 98 (1976), 106.
  • [53] NAM S.W., Mater. Sci. Eng., 322 (2002), 64.
  • [54] ISOBE N., SAKURAI S., YORIKAW.A. M., IMOU K., TAKAHASHI Y., Int. J. Press. Vess. Piping, 77 (2000), 817.
  • [55] TAKAHASHI Y., OGATA T., TAKE K., Nucl. Eng. Des., 153 (1995), 235.
  • [56] HALES R., Fatigue Eng. Mater. Struct., 3 (1980), 339.
  • [57] WAREING J., Fatigue Eng. Mater. Struct., 4 (1981), 131.
  • [58] JASKE C., MINDLIN H., PERRIN J., ASTM, 520 (1973), 365.
  • [59] OKAZAKI M., YAMAZAKI Y., Int. J. Fatigue, 21 (1999), 79.
  • [60] ASME, Boiler and Pressure Vessel Code, Section III, Code Case N-47, 1974.
  • [61] ROBINSON E.L., ASME Trans., 160 (1938), 253.
  • [62] MINER M.A., J. Appl. Mech., 12 (1945), A159.
  • [63] TAIRA S., Creep in Structures, Academic Press, 1962, pp. 96–124.
  • [64] LARSON F.R., MILLER J., ASME Trans., 1952, 765–775.
  • [65] Dynamic Systems, Inc. P.O. Box 1234, Poestenkill, NY, 12140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0006-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.