PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Electrical properties of 0.90Pb[(Mg,Zn)1/3Ta2/3]O3-0.10PbTiO3 relaxor

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polycrystalline 0.90Pb[(Mg2/3Zn1/3)1/3Ta2/3] O3-0.10PbTiO3 having a tetragonal perovskite type structure was prepared by the high temperature solid-state reaction method. Dielectric studies showed the relaxor behaviour with diffuse phase transition. High value of ∈max > 10000 was realized with the temperature of the permittivity maximum (Tm) around room temperature at 1 kHz. The frequency dependence of Tm has been modeled using Vogel-Fulcher relation. The dielectric relaxation in the present system was found analogous to the magnetic relaxation in spin-glass system. The shape of the complex impedance curve indicated that the system exhibited almost Debye type dielectric relaxation at 350 °C, where as non-Debye character was observed at temperatures ≥ 325 °C. Further the relaxation frequency was found to shift towards higher frequencies with an increase in temperature.
Wydawca
Rocznik
Strony
475--485
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
autor
  • Materials Research Laboratory, University Department of Physics, T. M. Bhagalpur University, Bhagalpur 812 007, India, k_prasad65@yahoo.co.in
Bibliografia
  • [1] BOKOV V.A., MYL’NIKOVA I.E., Sov. Phys. Tech. Phys., 2 (1961), 2428.
  • [2] CHOI S.W., JUNG J.M., J. Kor. Phys. Soc., 29 (1996), S672.
  • [3] LEE S.H., JUNG J.M., CHOI S.W., J. Korean Phys. Soc., 32 (1998), S1013.
  • [4] PRASAD S., PRASAD K., CHOUDHARY S.N., SINHA T.P., Physica B: Cond. Matter, 364 (2005), 206.
  • [5] VOGEL H., Z. Phys., 22 (1921), 645.
  • [6] FULCHER G., J. Am. Ceram. Soc., 8 (1925), 339.
  • [7] SINGH S.P., SINGH A.K., PANDEY D., J. Mater. Res., 18 (2003), 2677.
  • [8] LEE S.B., LEE K.H., KIM H., Jpn. J. Appl. Phys., 41 (2002), 5266.
  • [9] CHEN D.R., GUO Y.Y., Electron. Element. Mater., 1 (1982), 25.
  • [10] UCHINO K., NOMURA S., Ferroelectr. Lett., 44 (1982), 55.
  • [11] PRASAD K., Ind. J. Eng. Mater Sci., 7 (2000), 446.
  • [12] VIEHLAND D., LI J.F., JANG S.J., CROSS L.E., WUTTING M., Phys. Rev. B, 46 (1992), 8013.
  • [13] TAGANTSEV A.K., Phys. Rev. Lett., 72 (1994), 1100.
  • [14] VIEHLAND D., JANG S.J., CROSS L.E., WUTTING M., J. Appl. Phys., 68 (1990), 2916.
  • [15] BOKOV A.A., LESHCHENKO M.A., MALITSKAYA M.A., RAEVSKI I.P., J. Phys: Cond. Matter., 11 (1999), 4899.
  • [16] KUMAR A., PRASAD K., CHOUDHARY S.N., CHOUDHARY R.N.P., Matter. Lett., 58 (2004), 3395.
  • [17] TU CHI-SHUN, CHAO F.-C., YEH C.-H., TSAI C.-L., Phys. Rev. B, 60 (1999), 6348.
  • [18] MACDONALD J.R., Impedance Spectroscopy Emphasizing Solid Materials and Systems, Wiley, New York, 1987.
  • [19] BONNEAU P., GARNIER O., CALVARIN G., HUSSON E., GAVARRI J.R., HEWAT A.W., MORREL A., J. Solid State Chem., 91 (1991), 350.
  • [20] COLE K.S., COLE R.H., J. Chem. Phys., 9 (1941), 341.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0006-0021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.