PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wprowadzenie do technologii skaningu laserowego w leśnictwie

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Introduction to laser scanning technology in forestry
Języki publikacji
PL
Abstrakty
EN
Precise information about current state and recent changes of forest stands is important for forest inventory and forest management, traditionally based on the sample plots method and human-made measurement of some geometry parameters of trees. To reduce the time-consumed and subjective methods, several techniques were developed based on GPS, photogrammetry, remote sensing and in the last years also the airborn and terrestrial laser scanning (lidar). This technology can be categorized according to different criteria, for instance according to the position of scaner in space we distinguish airborne laser scanning (ALS), satellite laser scanning (SLS) and terrestrial laser scanning (TLS). On the other hand, according to the type of method used for handling the laser light we distinguish scanners based on time-of flight "pulse ranging" or on continous wave ranging "cw"). The newest development of lidar offers full-waveform scanners capturing new information about the vertical structure of the vegetation layer (except the first and the last echo). Airborne laser scanning (ALS) is capable to generate small footprint diameters (10-30cm) allowing accurate determination of the height of a stand or even a single tree. Two main approaches to deriving forest information from lidar are: spatial distribution of canopy height and individual tree detection (recognition, segmentation, delineation). Depending on the number of laser pulses per sq meter (more than 3 or 4) and on the tree species and its age individual trees can be recognized. Based on the original point cloud, digital terrain model (DTM) and digital surface model (DSM) describing the treetops can be generated. Points for the interpolation of the DTM are selects with the use of special filtering algorithms. The canopy height model (CHM) is obtained by subtracting the DTM from the corresponding DSM. The DSM is calculated by means of the first pulse echo and the DTM with the last pulse echo. Satellite laser scanning (SLS) uses large laser footprints (25-70m) delivering such data as: canopy top heights, vertical distribution of intercepted surfaces (e.g. leaves and branches), ground surface topographic elevations. Good example of SLS are: Vegetation Canopy Lidar (VCL) consisting of a fivebeam instrument of 25 m contiguous along track resolution, with the beams spaced 2 km from one another on a distance of 8 km, or Geoscience.s Laser Altimeter System (GLAS) which has 3 lidar on board, acquires elevation profiles of the entire earth consisting of footprints 70 m in diameter spaced every 175m along the profile. Terrestrial laser scanning (TLS) is capable of collecting clouds (XYZ, intensity) of several million data points just in a few minutes. Applications making use of TLS in forest inventory and monitoring are focused on rapid semi-automatic recognition and determination of stand characteristics such as diameters on different heights, height, tree density, stem gap fraction in the canopy structure, defoliation and of course the position of the stem (XYZ). Integration of airborne and terrestrial laser scanning opens new dimension in the forest inventory applications delivering in short time huge data sets which can be semi- or full-automatically processed. Lidar technology additionally supported by optical source of data like digital aerial photos or VHR satellite images can easily broaden the application of this geoinformation technology in the forestry.
Czasopismo
Rocznik
Strony
119--132
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
Bibliografia
  • Anderson H.E., McGaughey R.J., Carson W.W., Reutbuch ST. E., Mercer B., Allan J., 2004: A Comparison of Forest Canopy Models Derived from LIDAR and INSAR Data in a Pacific Northwest Confer Forest. International Archives of Photogrammetry and Remote Sensing 34 (Part 3/W13): pp. 211-217.
  • Aschoff T., Spiecker H., 2004: Algorithms for the Automatic Detection of Trees in Laser-Scanner Data. [In:] Thies M., Koch B, Spiecker H. and Weinacker, H.(eds.). Laser Scanners for Forest and Landscape Assessment. Proceedings of the ISPRS working group VIII/2. Freiburg, Germany, October, 3-6 2004. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XXXVI, Part 8/W2. pp. 71-75.
  • Bienert A., Maas H.G., Scheller St., 2006: Analysis of the information content of terrestrial laserscanner point clouds for the automatic determination of forest inventory parameters. [In:] Koukal T., Schneider W. (eds.): 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11. pp. 44-49.
  • Danson F.M., Hetherington D., Morsdorf F., Koetz B., Allgoewer B., 2006: Three-dimensional forest canopy structure from terrestrial laser scanning. [In:] Koukal T., Schneider W. (eds.): 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11. pp. 50-54.
  • Ducic V., Hollaus M., Ullrich A., Wagner W., Melzer Th., 2006: 3D vegetation mapping and classification using full-waveform laser scanning. [In:] Koukal T., Schneider W. (eds.): 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11. pp. 211-218.
  • Duong H., Pfeifer Nlindenbergh ., R., 2006: Analysis of repeated ICESAT full waveform data: methodology and leaf-on / leaf-off comparison. [In:] Koukal T., Schneider W. (eds.): 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11. pp. 228-237.
  • Holmgren J., Persson A., 2004: Identifying species of individual trees using airborne laser scanning. Remote Sensing of Environment 90, pp. 415-423.
  • Hug C., Ullrich A., Grimm A., 2004: LiteMapper-5600 . a waveform-digitizing lidar terrain and vegetation mapping system. [In:] Thies, M., Koch, B, Spiecker, H. and Weinacker, H.(eds.). Laser Scanners for Forest and Landscape Assessment. Proceedings of the ISPRS working group VIII/2. Freiburg, Germany, October, 3-6 2004. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XXXVI, Part 8/W2. pp. 24-29.
  • Hyyppä J., Yu X., Hyyppä H., Maltamo M., 2006: Methods of airborne laser scanning for forest information extraction. [In:] Koukal T., Schneider W. (eds.): 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11. pp. 63-78.
  • Koch B., Diederhagen O., Straub Ch., Weinacker H., 2006: Standwise delineation based on 3-D information from LIDAR. Proceedings 3-D Remote Sensing in Forestry. [In:] Koukal T., Schneider W. (eds.): 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11., pp.1-14.
  • Lefsky M., Cohen W., Harding D., Parker G., Acker S., Gower S., 2001: Lidar remote sensing of aboveground biomass in three biomes. Int. Arch. of Rem. Sens. XXXIV-3/W4, Annapolis, pp. 6.
  • Lim K., Treitz, P., Wulder M., St-Onge B., Flood M., 2002: Lidar remote sensing of forest structure. Progress in Physical Geography, 27(1), pp. 88-106.
  • Means J., Acker S., Harding D., Blair B., Lefsky M., Cohen W., Harmon M., McKee W., 1999: Use of largefootprint scanning airborne LIDAR to estimate forest stand characteristics in the western Cascades of Oregon. Remote Sensing of the Environment 67: pp. 298-308.
  • Naesset E., 1997: Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment 61: pp. 246-253.
  • Nilsson M., 1996: Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment 56: pp.1-7.
  • Persson A., Holmgren J., Sodermann U., 2002: Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering & Remote Sensing 68(9), pp. 925-932.
  • Popescu S.C., Wynne R.H., Nelson R.F., 2003: Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing, 25(5). pp. 564-577.
  • Reitberger J., Krzystek P., Heurich M., 2006: Full-waveform analysis of small footprint airborne laser scanning data in the Bavarian Forest National Park for tree species classification. [In:] Koukal T., Schneider W. (eds.). 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/ 11. pp. 218-227.
  • Rieger P., Ullrich A., Reichert R., 2006: Laser scanners with echo digitization for full waveform analysis. [In:] Koukal T., Schneider W. (eds.). 3-D Remote Sensing in Forestry, Vienna. EARSeL SIG Forestry SIG Forestry. ISPRS WG VIII/11. pp. 204-210.
  • Solberg S., Næsset E., Lange H., Bollandsås O., 2004: Remote sensing of forest health. [In:] Thies M., Koch B., Spiecker H. and Weinacker, H.(eds.). Laser Scanners for Forest and Landscape Assessment. Proceedings of the ISPRS working group VIII/2. Freiburg, Germany, October, 3-6 2004. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XXXVI, Part 8/W2. pp. 161-166.
  • Schnadt K., Katzenbeißer R., 2004: Unique airborne fiber scanner technique for application-oriented LiDAR products. [In:] Thies, M., Koch, B, Spiecker, H. and Weinacker, H. (eds.). Laser Scanners for Forest and Landscape Assessment. Proceedings of the ISPRS working group VIII/2. Freiburg, Germany, October, 3-6 2004. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XXXVI, Part 8/W2. pp. 19-23.
  • Thiel K.H., Wehr A., 2004: Performance capabilities of laser scanners . an overview and measurement principle analysis. [In:] Thies M., Koch B., Spiecker H. and Weinacker, H.(eds.). Laser Scanners for Forest and Landscape Assessment. Proceedings of the ISPRS working group VIII/2. Freiburg, Germany, October, 3-6 2004. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XXXVI, Part 8/W2. pp. 14-18.
  • Thies M., Spiecker H., 2004: Evaluation and Future Prospects of Terrestrial Laser-Scanning for Standardized Forest Inventories. [In:] Thies M., Koch B., Spiecker H. and Weinacker, H. (eds.). Laser Scanners for Forest and Landscape Assessment. Proceedings of the ISPRS working group VIII/2. Freiburg, Germany, October, 3-6 2004. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XXXVI, Part 8/W2. pp.192-197.
  • Wack R., Wimmer A., 2002: Digital Terrain Models from Airborne Laserscanner Data . a Grid based approach Proceedings of the ISPRS Commission III Symposium Graz. pp. 293-296.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0006-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.