PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane zdalne metody szacowania biomasy roślinnej w ekosystemach leśnych jako podstawa systemu raportowania bilansu węgla

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Selected remote sensing methods for biomass assessment in forest ecosystems as the basis for balance reporting systems
Języki publikacji
PL
Abstrakty
EN
Effects of increasing CO2 content in the atmosphere of Earth have been widely discussed for a long time and found their expression in a form of the .Kyoto Protocol.. The document shows various ways of reducing the CO2 content. Forest management is listed as one of such possibilities. Thus, the important issue arises to monitor carbon amount accumulated or released as a result of forest ecosystem management as well as to predict its changes depending on various scenarios. The importance of this problem persuaded the General Directorate of State Forests to fund a research project entitled .The Carbon balance in biomass of the major forest forming species in Poland.. The goal of the project is to elaborate and validate allometric equations and expansion factors for determining the biomass of forest stands. Methods to assess amount of carbon accumulated in forest ecosystems as well as methods of detecting changes in carbon accumulation and dynamics resulting from various ways of forest management were also to be elaborated. The first stage of the research, planned for years 2007.2010, is to be performed on about 300 sample plots representing different age classes and sites for 8 major forest tree species and 12 species of shrubs. Empirical equations and expansion factors for determining biomass of trees, shrubs, forest floor, and carbon sequestered in stands will be worked out based on direct and indirect measurements of various forest attributes. The valuable element of the project is a possibility of data integration and comparison of various research methods (satellite and airborne imagery, airborne and terrestrial laser scanning, hemispheric images). As a result of the project, also answers to the following questions are expected: What is the influence of LAI, determined with the use of various methods (hemispheric images, airborne and satellite imagery, and airborne and terrestrial laser scanning), on the accuracy of tree biomass and stand carbon balance assessment? What is the role of vegetation indices on tree biomass assessment accuracy? Does the terrestrial laser scanning significantly increase accuracy and precision, and shorten time of tree, stand and forest floor plants. measurements and their biomass assessment?
Czasopismo
Rocznik
Strony
7--16
Opis fizyczny
Bibliogr. 65 poz.
Twórcy
autor
autor
autor
  • Zakład Urządzania Lasu, Katedra Urządzania Lasu, Wydział Leśny, Akademia Rolnicza w Poznaniu, strzelin@au.poznan.pl
Bibliografia
  • Aschoff T., Thies M., Spiecker H., 2004: Describing forest stands using terrestrial laser-scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 35(5), pp. 237-241.
  • Bartelink H.H., 1998: Radiation interception by forest trees: a simulation study on effects of stand density and foliage clustering on absorption and transmission. Ecological Modelling 105, pp. 213-225.
  • Becker P.F., Erhart D.W., Smith A.P., 1989: Analysis of forest light environments. I. Computerized estimation of solar radiation from hemispherical photographs. Agricultural and Forest Meteorology 44, pp. 217-232.
  • Berterretche M., Hudak A.T., Cohen W.B., Maiersperger T.K., Gower S.T., Dungan J., 2005: Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sensing of Environment 96 (1), pp. 49-61.
  • Blair J.B., Hofton M.A., 1999: Modeling laser altimeter return waveforms over complex vegetation using high-resolution elevation data. Geophysical Research Letters, 26, pp. 2509-2512.
  • Chan S.S., McCreight M.C., Walstad J.D., Spies T.A., 1986: Evaluating forest cover with computerized analysis of fisheye photographs. Forest Science 32, pp. 1085-1091.
  • Chasmer L., Hopkinson C., Treitz P., 2004: Assesing the three-dimensional frequency distibution of airborne and ground-based lidar data for red pine and mixed deciduous forest plots. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (8/W2), pp. 66-70.
  • Chen J.M., 1996: Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology 80, pp. 135-163.
  • Danson F.M., Hetherington D., Morsdorf F., Koetz B., Allgower B., 2006. Three-dimensional forest kanopy structure from terrestrial laser scanning. Workshop on 3D Remote Sensing in Forestry 14th-15th Feb. 2006 Vienna . Session 2b.
  • Drake J.B., Dubayah R.O., Clark D.B., Knox R.G., Blair J.B., Hofton M.A., Chazdon R.L., Weishampel J.F., Prince S., 2002: Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment 79, pp. 305-319.
  • Drake J.B., Knox R.G., Dubayah R.O., Clark D.B., Condit R., Blair J.B., Hofton M., 2003: Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Global Ecology & Biogeography. 12, pp. 147-159.
  • Dubayah R., Drake J.B., 2000: Lidar remote sensing for forestry applications. Journal of Forestry. 98, pp. 44-46.
  • Dubayah R., Knox R., Hofton M., Blair J.B., Drake, J., 2000: Land surface characterization using LIDAR remote sensing. [In:] Hill M. and Aspinall R. (eds.). Spatial Information for Land Use Management. International Publishers Direct, Singapore. http://www.geog.umd.edu/vcl/pubs/chapter.pdf
  • Englund S.R., O.Brien J.J., Clark D.B., 2000: Evaluation of digital and film hemispherical photography and spherical densiometry for measuring forest light environments. Canadian Journal of Forest Research 30(12), pp. 1999-2005.
  • Franco M., Kelly C.K., 1998: The interspecific mass-density relationship and plant geometry. Proceedings of the National Academy of Sciences USA. 95, pp. 7830-7835.
  • Frazer G.W., Canham C.D., Lertzman K.P., 1999: Gap Light Analyzer (GLA), vers. 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Burnaby, British Columbia: Simon Fraser Univ. and Millbrook, NY: Institute of Ecosystem Studies.
  • Givnish T.J., 1986: Biomechanical constraints on self-thinning in plant populations. Journal of Theoretical Biology. 119, pp. 139-146.
  • Gower S.T., Kucharik C.J., Norman J.M., 1999: Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sensing and Environment, 70, pp. 29-51.
  • Harding D.J., Lefsky M.A., Parker G.G., Blair J.B., 2001: Laser altimeter canopy height profiles: methods and validation for closed canopy, broadleaf forests. Remote Sensing of Environment. 76, pp. 283-297.
  • Henning J.G., Radtke P.J., 2006: Ground-based Laser Imaging for Assessing Three Dimensional Forest Canopy Structure. Photogrammetric Engineering and Remote Sensing Journal American Society for Photogrammetry and Remote Sensing. 72(12), pp. 1349-1358.
  • Hese S., Schmullius C., Dubayah R., Lucht W., Barnsley M., 2004: The Earth Observation Mission Carbon-3D - a Synergetic Multi-sensor Approach to Global Biomass Mapping for an Improved Understanding of the CO2 Balance. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 35 (8/W2), pp. 301-306.
  • Hyer E.J., Goetz S.J., 2004: Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: assessments from a boreal forest site. Agricultural and Forest Meteorology. 122 (3-4), pp. 157-174.
  • Inoue A., Yamamoto K., Mizoue, N., Kawahara Y., 2002: Estimation of relative illuminance using digital hemispherical photography. Journal of Forest Planning 8, pp. 67-70.
  • Inoue A., Yamamoto K., Mizoue, N., Kawahara Y., 2004: Effects of image quality, size and camera type on forest light environment estimates using digital hemispherical photography. Agricultural and Forest Meteorology. 126 (1-2), pp. 89-97.
  • Johansen K., Phinn S., 2006: Mapping structural parameters and species composition of riparian vegetation using IKONOS and landsat ETM plus data in Australian tropical savannahs. Photogrammetric Engineering and Remote Sensing 72(1), pp. 71-80.
  • Kalacska M., Sanchez-Azofeifa A., Caelli T., Rivard B., Boerlage B., 2005: Estimating leaf area index from satellite imagery using Bayesian networks. IEEE Transactions on Geoscience and Remote Sensing 43 (8), pp. 1866-1873.
  • Kucharik C.J., Norman J.M., Gower S.T., 1998a: Measurements of branch area and adjusting leaf area indem indirect measurements. Agricultural and Forest Meteorology, 91, pp. 69-88.
  • Kucharik C.J., Norman J.M., Gower S.T., 1998b: Measurements of leaf orientation, light distribution and sunlit leaf area in a boreal aspen forest. Agricultural and Forest Meteorology, 91, pp. 127-148.
  • Kyoto Protocol to the UN Framework Convention on Climate Change. New York, USA, 1998.
  • Lefsky M.A., Cohen W.B., Acker S.A., Parker G.G., Spies T.A., Harding D., 1999a: Lidar remote sensing of the canopy structure and biophysical properties of Douglas-Fir-Western Hemlock Forests. Remote Sensing of the Environment. 70, pp. 339-361.
  • Lefsky M.A., Harding D., Cohen W.B., Parker G.G., Shugart H.H., 1999b: Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of the Environment. 67, pp. 83-98.
  • Lefsky M.A., Cohen W.B., Parker G.G., Harding D., 2002: Lidar remote sensing for ecosystem studies. BioScience. 52(1), pp. 19-30.
  • Lefsky, M.A., Cohen W.B., 2003: Selection of remotely sensed data. [In:] Wulder M.A, Franclin S.E. (Eds.). Methods and Applications for Remote Sensing: Concepts and Case Studies. Dordnecht, Kluwer Academic Publishers, pp. 13-46.
  • Lim K., Treitz P., Wulder M., St-Onge B., Flood M. 2003. Lidar remote sensing of forest structure. Progress in Physical Geography. 27 (1), pp. 88-106.
  • Magnussen S., Eggermont P., LaRiccia V.N., 1999: Recovering tree heights from airborne laser scanner data. Forest Science. 45, pp. 407-422.
  • Manninen T., Stenberg P., Rautiainen M., Voipio P., Smolander H., 2005: Leaf area index estimation of boreal forest using ENVISAT ASAR. IEEE Transactions on Geoscience and Remote Sensing 43 (11), pp. 2627-2635.
  • Martens S.N., Ustin S.L., Rousseau R.A., 1993: Estimation of tree canopy leaf area index by gap fraction analysis. Forest Ecolology and Management 61, pp. 91-108.
  • Means J.E., Acker S.A., Harding D.J., Blair J.B., Lefsky M.A., Cohen W.B., Harmon M.E., McKee W.A., 1999: Use of largefootprint scanning airborne lidar to estimate forest stand characteristics in the Western Cascades of Oregon. Remote Sensing of Environment 67, pp. 298-308.
  • Megumi I., 2004: Automatic thresholding for digital hemispherical photography. Canadian Journal of Forest Research 34 (11), pp. 2208-2216.
  • Mette T., Papathanassiou K.P., Hajnsek I., Zimmermann R., 2003: Forest biomass estimation using polarimetric SAR interferometry. Proceedings of POLinSAR 2003, Frascati, Italy, January 14-16, 2003.
  • Nelson R., Krabill W., Tonelli J., 1988: Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment 24, pp. 247-267.
  • O’Neill R.V., DeAngelis D.L., 1981: Comparative productivity and biomass relations of forest ecosystems. Dynamic properties of forest ecosystems [In:]Reichle D.E.(Eds.). Cambridge University Press, Cambridge, pp. 411-449.
  • Oohata S., Shinozaki K., 1979: A statistical model of plant form . Further analysis of the pipe model theory. Japanese Journal of Ecology 29, pp. 323-335.
  • Pfeifer N., Gorte B., Winterhalder D., 2004: Automatic reconstruction of single trees from terrestrial laser scanner data. International Archves of Photogrammetry, Remote Sensing and Spatial Information Sciences. 35 (B), pp. 114-119.
  • Pfeifer N., Winterhalder D., 2004: Modelling of tree cross sections from terrestrial laser scanning data with free-form curves. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (8/W2), pp. 76-81.
  • Robakowski P., 2003. Retrospektywna analiza przyrostów sadzonek jodły pospolitej (Abies alba Mill) rosnących pod okapem różnych gatunków drzew w Karkonoskim Parku Narodowym. Sylwan 1, s. 41-50.
  • Robakowski P., Wyka T., Samardakiewicz S., Kierzkowski D., 2004: Growth, photosynthesis, and needle structure of silver fir (Abies alba. Mill.) seedlings under different canopies. Forestry Ecololy and Management 201 (2/3), s. 211-227.
  • Simonse M., Aschoff T., Spiecker H., Thies M., 2003: Automatic Determination of Forest Inventory Parameters Using Terrestrial Laserscanning. Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests. Umeå, Sweden, pp. 251- 257.
  • Strzeliński P., 2006. Zastosowanie zdjęć hemisferycznych w badaniach ekosystemów leśnych. Roczniki Geomatyki, Tom IV, Zeszyt 2, s. 103-112, PTIP Warszawa.
  • Thies M., Pfeifer N., Winterhalder D., Gorte B.G.H., 2004: Three-Dimensional Reconstruction of Stems for Assessment of Taper, Sweep and Lean Based on Laser Scanning of Standing Trees. Scandinavian Journal of Forest Research 19, pp. 571-581.
  • Thies M., Spiecker H., 2004: Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (8/W2), pp. 192-197.
  • Turner D.P., Ollinger S.V., Kimball J.S., 2004: Integrating Remote Sensing and Ecosystem Process Models for Landscape to Regional Scale Analysis of the Carbon Cycle. BioScience 54, pp. 573-584.
  • Wagner S., 1994: Strahlungsschatzung in Waldern durch hemispharische Fotos. Berichte des Forschungszentrums Waldökosystem, Band. 123, pp. 1-169.
  • Waring R.H., Running S.W., 1998: Forest Ecosystems: Analysis at Multiple Scales, Academic Press, New York.
  • Watt P.J., Donoghue D.N.M., 2005: Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing 26 (7), pp. 1437-1446.
  • Xu M., Harrington T.B., 1998: Foliage biomass distribution of loblolly pine as affected by tree dominance, crown size and stand characteristics. Canadian Journal of Forest Research 28, pp. 887-892.
  • Zawiła-Niedźwiecki T., Gruszczyńska M., Strzelecki P., 1993: Wskaźnik LAI w teledetekcyjnej ocenie kondycji lasu. Sylwan 137(6), s. 55-60.
  • http://www.cid-inc.com
  • http://www.delta-t.co.uk
  • http://www.ecostudies.org/gla
  • http://www.faro.com
  • http://www.gifu-u.ac.jp/~ishidam/RGBFisheye02.htm
  • http://www.licor.com/env/Products/AreaMeters/lai2000/2000_intro.jsp
  • http://www.raynox.co.jp/english/dcr/dcrcf185pro
  • http://www.regent.qc.ca
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0005-0041
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.