PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intermolecular interactions in plant cells reflected by ultraweak luminescence penomenon

Identyfikatory
Warianty tytułu
Konferencja
8th International Conference on Intermolecular and Magnetic Interaction in Matter, Nałeczów 8-10 September 2005
Języki publikacji
EN
Abstrakty
EN
It is commonly known that photons necessarily participate in atomic and molecular interactions. On the other hand, plant, animal and human cells spontaneously emit electromagnetic radiation. The universality of ultraweak cell luminescence is inherently associated with fundamental processes in living organisms. The majority of researchers think that this very weak radiation (10-105 photons/(cm2-s)) results from such radical reactions as, for instance, lipid peroxidation. Having at our disposal the spectra of ultraweak luminescence (UL) from intact Characeae cells and their particular cellular structures and fractions, we could confirm that the electron carriers of the mitochondrial respiration chain were active in cytoplasm and in the intact cells but not in the cell walls. We obtained a band of chlorophyll emission in UL spectra. The dark chlorophyll should not emit fluorescence, which we observed under illumination. Nevertheless in our experiments, in which plants were kept in darkness for ca. 12 hours prior to measurement, this emission was observed. The only way to account for this phenomenon is that the energy of excitation is transferred to chlorophyll by other molecules. In this ultraweak sensibilized luminescence, the excited carbonyl molecules 1,3(=C=O*) transfer their energy to chlorophyll molecules with a high quantum efficiency. As we found in the spectral analysis of UL, the intensity at the wavelength of 634 nm - corresponding to dimoles of singlet oxygen - markedly decreased when the cells were exposed to the action of ascorbic acid (AsA) and lignocaine, which are singlet oxygen quenchers.
Wydawca
Rocznik
Strony
1115--1125
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
autor
Bibliografia
  • [1] FRÖHLICH H., Int. J. Quantum Chem., 23 (1983), 1589.
  • [2] GU Q., Physics (China), 18 (1989), 235.
  • [3] DEL GUIDICE L., DOGLIA S., MILANI M., VITELLO G., Structures, correlations and electromagnetic interactions in living matter: theory and applications, [in:] H. Froelich (Ed.), Biological Coherence and Response to External Stimuli, Springer-Verlag, Berlin, 1988.
  • [4] POPP F.A, NAGL W., LI K.H., SCHOLZ W., WEINGARTNER O., WOLF R., Cell. Biophys., 6 (1984), 33.
  • [5] VAN VIJK R., J. Sci. Explor., 15 (2001), 183.
  • [6] KUZIN A.M., Radiats. Biol. Radioecol., 34 (1994), 398 (in Russian).
  • [7] KUZIN A.M., Biofizika, 45 (2000), 144 (in Russian).
  • [8] KOBAYASHI M., DEVARAJ B., USA M., TANNO Y., TAKEDA M., INABA H., Photochem. Photobiol., 65 (1997), 535.
  • [9] KAI S., OHYA T., MORITA K., FUJIMOTO T., Phys. A, 210 (1994), 391.
  • [10] MEI W.P., Ultraweak photon emission from synchronized yeast (Saccharomyces cerevisiae) as a function of the cell division cycle [in:]: F.A. Popp, K.H. Li, Q. Gu, (Eds.), Recent Advances in Biophoton Research and Its Applications, World Scientific, Singapore, 1992, p. 243.
  • [11] KAI S., OHYA T., MORITA K., FUJIMOTO T., Jpn. J. Appl. Phys., 1 (1995), 6530.
  • [12] NAGL W., POPP F.A., Cytobios., 37 (1983), 45.
  • [13] SŁAWIŃSKA D., POLEWSKI K., SŁAWIŃSKI J., Bioelectrochem. Bioenerg., 343 (1992), 483.
  • [14] BOVERIS A., VARSAVSKY A.I., GONÇALVES J., SÁNCHEZ R.A., Photochem. Photobiol., 38 (1983), 99.
  • [15] VAN WIJK R., TILBURY R.N., SLAWINSKI J., EZZAHIR A., GODLEWSKI M., KWIECINSKA T., RAJFUR Z., SITKO D., WIERZUCHOWSKA D., KOCHEL B., QU Q, POPP F.A., LILIUS E.M., MARNILA P., AKEN J.M., Experientia, 48 (1992), 1092.
  • [16] NASCIMENTO A.L.T.O., CILENTO G., Photochem. Photobiol., 53 (1991), 379.
  • [17] MAKINO T., KATO K., IYOZUMI H., HONZAWA H., TACHIIRI Y., HIRAMATSU M., Photochem. Photobiol., 64 (1996), 953.
  • [18] SALIN M.L., QUINCE K.L., HUNTER D.J., Photobiochem. Photobiophys., 9 (1985), 271.
  • [19] SUZUKI S., USA M., NAGOSHI T., KOBAYASHI M., WATANABE N., WATANABE H., INABA H., J. Photochem. Photobiol. B: Biol., 9 (1991), 211.
  • [20] SŁAWIŃSKI J., Indian J. Experimen. Biol., 41 (2003a), 483.
  • [21] SŁAWIŃSKI J. Photon emission from perturbed and dying organisms – the concept of photon cycling in biological systems, [in:] A.F. Popp, L. Beloussov (Eds.), Integrative Biophysics, Kluwer Academic Publishers, Dordrecht, 2003, p. 307.
  • [22] JAŚKOWSKA A., ŚPIEWLA E., Problems Modern Biophys., 4 (1979), 65 (in Polish).
  • [23] KINNE-SAFRAN E., KINNE R.K.H., Meth. Enzymol., 172 (1989), 3.
  • [24] INABA H., Experientia, 44 (1988), 550.
  • [25] TRYKA S., Comput. Chem. 22 (1998), 113.
  • [26] JAŚKOWSKA A., BORC R., MILCZAREK I., DUDZIAK A., ŚPIEWLA E., Luminescence, 16 (2001), 51.
  • [27] WISSER A.J.W.G., VAN HOEK A., Photochem. Photobiol., 33 (1981), 35.
  • [28] NISHIMURA Y., TSUBOI M., Chem. Phys. Lett., 59 (1978), 210.
  • [29] MILCZAREK I., JAŚKOWSKA A., GOŁĘBIOWSKA D., Effect of humic acid and polyphenols on ultraweak luminescence from Characeae cells, [in:]N. Senesi, T.M. Miano (Eds.), Humic Substances in the Global Environment and Implications for Human Health, Elsevier, Amsterdam, 1994, p. 323.
  • [30] RADOTIĆ K., REDENOWIĆ Č., JEREMIĆ M., VUČINIĆ Ž., J. Biolumin. Chemilumin., 5 (1990), 221.
  • [31] KHAN A.U., J. Biolumin. Chemilumin., 4 (1989), 200.
  • [32] SŁAWIŃSKI J., Research method of weak photon emission from biological systems, [in:] J. Twardowski (Ed.), Biospectroscopy 3, PWN, Warszawa, 1989, 107 (in Polish).
  • [33] ZANOCCO A.L., LEMP E.M., PIZARRO N., DE LA FUENTE J.R., GÜNTHER G., J. Photochem. Photobiol. A: Chem., 140 (2001), 109.
  • [34] JAŚKOWSKA A., GÓRSKI Z., DUDZIAK A. Proc. SPIE, 5566 (2003), 15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0003-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.