PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes of structural, optical and electrical properties of sol-gel derived ZnO films with their thickness

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zinc oxide (ZnO) films having thickness in the range from 15 nm to 208 nm have been fabricated by the sol-gel technique by varying number of sequentially deposited layers. The structural, optical and electrical properties of ZnO films were investigated as a function of film thickness. The crystallinity and degree of orientation of the ZnO films were closely related to the film thickness. The textures of the films improved only at an optimum thickness. At lower thicknesses, the roughness of the film became very large and led to the presence of possible voids having porous microstructure. The absorption in UV region depended strongly on sequential layers and increased with the increase of film thickness. Films thinner than ca. 60 nm exhibit morphology and behaviour different from thicker ones. A marked increase in resistivity for thinner films can predominantly be attributed to surface scattering and the decrease in carrier concentration.
Słowa kluczowe
EN
sol-gel   ZnO  
PL
Wydawca
Rocznik
Strony
233--242
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] PEARTON S.J., NORTON D.J., IP K., HEO Y.W., STEINER T., Progress Mater. Sci., 50 (2005), 293.
  • [2] JIMENEZ-GONZALEZ A.E., JOSE A. SOTO URUETA, SUAREZ-PARRA R., J. Cryst. Growth, 192 (1998), 430.
  • [3] JAGER S., SZYSZKA B., SZCZYRBOWSKI J., BRAUER G., Surf. Coatings Technol., 98 (1998), 1304.
  • [4] TANG Z.C., WONG G.K.L., YU .P, KAWASAKI M., OHTOMO A., KOINUMA H., SEGAWA Y., Appl. Phys. Lett.,72 (1998), 3270.
  • [5] SAGAR P., KUMAR M., MEHRA R.M., Thin Solid Films, 489 (2005), 94.
  • [6] BAIK D.G., CHO S.M., Thin Solid Films, 354 (1999), 227.
  • [7] FONS P., IWATA K., NIKI S., YAMADA A., MATSUBARA K., WATANABE M., J. Cryst. Growth, 209 (2000), 532.
  • [8] SAKURAI K., IWATA D., FUJITA S., FUJITA S., Jpn. J. Appl. Phys., Part 138 (1999), 2606.
  • [9] LIU Y., GORLA C.R., LIANG S., EMANETOGLU N., LU Y., SHEN H., WRABACK M., J. Electron. Mater., 29 (2000), 69.
  • [10] VOSSEN J.L., Phys. Thin Films, 9 (1977), 1.
  • [11] KARULKAR P.C., MC COY M.E., Thin Solid Films, 83 (1981), 259.
  • [12] FUJIMURA N., NISHIHARA T., GOTO S., XU J., ITO T., J. Cryst. Growth, 130 (1993), 269.
  • [13] OHYA Y., SAIKI H., TANAKA T., TAKAHASHI Y., J. Am. Ceram. Soc., 79 (1996), 825.
  • [14] SETO J.Y.W., J. Appl. Phys., 46 (1975), 5247.
  • [15] VAN DER DRIFT A., Philips Res. Rep., 22 (1967), 267.
  • [16] KNUYT G., QUAEYHAEGENS C., HAEN J.D., STALS L.M., Phys. Stat. Sol. B, 195 (1996), 179.
  • [17] BARNA P.B., ADAMIK M., Thin Solid Films, 317 (1998), 27.
  • [18] SAGALOWICZ L., FOX G.R., J. Mater. Res., 14 (1999), 1876.
  • [19] PARRAT I.G., Phys. Rev., 95 (1954), 359.
  • [20] SU-SHIA L., JOW-LAY H., DING-FWU L., Surf. Coatings Technol., 190 (2005) 372.
  • [21] DEMIRYONT H., NIETERING K.E., Sol. Energy Mater., 9 (1989), 79.
  • [22] TANG W., CAMERON D.C., Thin Solid Films, 238 (1994), 83.
  • [23] TASSIS D.H., DIMITRIADIS C.A., BRINI J., KAMARINOS G., BIRBAS A., J. Appl. Phys., 85, (1999) 4091.
  • [24] PAPAGEORGIOU D.G., EVANGELAKIS G.A., Surf. Sci. Lett., 461 (2000), 543.
  • [25] ANUBHA J., SAGAR P., MEHRA R.M., Solid State Electron., 50 (2006), 1420.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0003-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.