PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Teoria i technika fluidyzacji

Identyfikatory
Warianty tytułu
EN
Theory and technique of fluidization
Języki publikacji
PL
Abstrakty
PL
Monografia zawiera podsumowanie postępów w rozwoju teorii i techniki fluidyzacji w czasie ostatniego trzydziestolecia. Opracowanie obejmuje hydrodynamikę, wymianę ciepła i masy podczas fluidyzacji ciecz-cialo stałe, gaz-ciało stałe i fluidyzacji fontannowej. Ponadto scharakteryzowano poszczególne rodzaje układów fluidalnych gaz-ciało stałe oraz omówiono właściwości cyrkulacyjne-go złoża fluidalnego. Przedstawiono opisy modelowe poszczególnych typów złóż fluidalnych. Dokonano analizy fontannowych układów fluidalnych oraz omówiono charakterystykę zraszanych złóż fontannowych. Podane zostały również przykładowe zastosowania w przemyśle poszczególnych rodzajów aparatów fluidyzacyjnych.
EN
The monograph contains a summary of the advances made in fluidization theory and technique over, the last thirty years. In particular, the work comprises hydrodynamics, heat and mass transfer in solid-liquid fluidized beds, gas-solid fluidized beds and in spouted beds. Moreover, particular types of fluidized beds are characterized and a circulating fluidized bed system is discussed. Model descriptions of different fluidized bed systems are presented. Spouted beds are analyzed and characteristics of wetted spouted beds are discussed. Also examples of application of the various types of fluidizing apparatus are given.
Twórcy
autor
autor
  • Zakład Inżynierii Chemicznej Wydziału Chemicznego Politechniki Wrocławskiej, ul. Norwida 4/6, 50-373 Wrocław
Bibliografia
  • Wstęp
  • [1] F. WINKLER, Deutches Reichspatent 437 970 (1922).
  • [2] J. WERTHER, Stroemungsmechanische Grundlagen der Wirbelschichttechnik, Chem.-Ing.-Tech., 49, 3 (1977) 193-202,
  • [3] Fluidization, editors: J.F. Davidson, D. Harrison, Academic Press, London (1971).
  • [4] Psevdoožiženie, red, E.N. Gelperin, Chimija, Moskwa (1974),
  • [5] I.M. RAZUMOW, Fluidyzacja i transport pneumatyczny, WNT, Warszawa (1975)
  • [6] M. LEVA, Fluidization, Mc Graw-Hill Book Corp..New York (1959).
  • [7] F.A. ZENZ, D.F. OTHMER, Fluidization and Fluid-Particle Systems, Reinhold Publ. Corp., New York (1960).
  • [8] J.F DAVIDSON, D. HARRISON, Fluidised Particles, Cambridge University Press (1963).
  • [9] D. KUNII, O. LEVENSPIEL, Fluidization Engineering, John Wiley, New York (1969),
  • [10] S.L. SOO, Fluid Dynamics of Multiphase Systems, Brasidell Publ. Corp., New York (1967),
  • [11] K.B. MATHUR, N. EPSTEIN, Spouted Beds, Academic Press, New York (1974).
  • [12] Fluidization - 2nd Edition, editors: J.F. Davidson, R. Clift, D. Harrison, Academic Press, London (1985).
  • [13] J.G. YATES, Effects of temperature and pressure on gas-solid fluidization, Chem. Eng. Sci., 51, 2 (1996)167-205.
  • [14] A. KMIEĆ, Badanie mechaniki układu fluidalnego ciecz-ciało stale, Prace Naukowe Instytutu Inżynierii Chemicznej i Urządzeń Cieplnych Politechniki Wrocławskiej nr 30, seria: Monografie nr 15, Wroclaw (1975).
  • [15] A. KMIEĆ, Ekspansja złoża oraz wymiana ciepła i masy w układach fluidalnych, Prace Naukowe Instytutu Inżynierii Chemicznej i Urządzeń Cieplnych Politechniki Wrocławskiej nr 36, seria: Monografie nr 19, Wrocław (1980).
  • [16] Z. ZIÓŁKOWSKI, A. KMIEĆ, Nowy typ aparatu fluidalno-wytryskowego, Inż. Apar. Chem., 11,6 (1972)10-14.
  • [17] A. Kmieć, Simultaneous Heat and Mass Transfer in Spouted Beds, Can. J. Chem. Eng., 53, 1 (1975) 18-24
  • [18] A. KMIEĆ, Równoczesna wymiana ciepła i masy w układach fluidalnych fontannowych, Inżynieria Chemiczna, VI, 3 (1976) 497-516.
  • Rozdział 2
  • [1] R. DI FELICE, Hydrodynamics of liquid fluidisation, Chem. Eng. Sci., 50 (1995) 1213-1245.
  • [2] A. KMIEĆ, Badanie mechaniki układu fluidalnego ciecz-ciało stałe, Prace Naukowe Instytutu Inżynierii Chemicznej i Urządzeń Cieplnych Politechniki Wrocławskiej nr 30, Monografie nr 15, Wroclaw (1975).
  • [3] A. KMIEĆ, Ekspansja złoża oraz wymiana ciepła i masy w układach fluidalnych, Prace Naukowe Instytutu Inżynierii Chemicznej i Urządzeń Cieplnych Politechniki Wrocławskiej nr 36, Monografie nr 19, Wrocław (1980).
  • [4] K. RIETEMA, Science and technology of dispersed two - phase systems - I and II, Chem. Eng. Sci., 37 (19S2) 1125-1150.
  • [5] M. KWAUK, Fluidization - Idealised and Bubbleless, with Applications, Ellis Horwood, Chichester, 1992.
  • [6] M. KWAUK, Particulate fluidization: an overview, Adv. Chem. Engng., 17 (1992) 207-360,
  • [7] R.B. BIRD, W.E. STEWART, E.N. LIGHTFOOT, Transport Phenomena, Wiley, New York, 1960,
  • [8] G.B WALLIS, One Dimension Two -phase Flow, McGraw - Hill, New York, 1969, [9] L.G. GIBILARO, S.P, WALDRAM, P.U, FOSCOLLO, A simple mechanistic description of the unsteady state expansion of liquid fluidized beds, Chem. Eng. Sci., 38 (1983) 607-610,
  • [10] L.G. GIBILARO, S.P. WALDRAM, P.U. FOSCOLLO, Authors' reply to comments by N. EPSTEIN, Chem. Eng. Sci. 39 (1984) 1819-1820,
  • [11] L.G. GIBILARO, R. DI FELICE, S.P, WALDRAM, P.U, FOSCOLLO, Authors' reply to comments by Clift et al., Chem. Eng. Sci., 42 (1987) 194-196,
  • [12] N. EPSTEIN, Comments on a unified model for particulate expansion of fluidized beds and flow in fixed porous media, Chem. Eng. Sci., 39 (1984) 1533-1534.
  • [13] R. CLIFT, J.P.K. SEVILLE, S.C. MOORE, C. CHAVARIE, Comments on buoyancy in fluidized beds, Chem. Eng. Sci., 42 (1987) 191-194,
  • [14] L.S. FAN, L.S. HAN, R.S. BRODKEY, Comments on the buoyancy force on a particle in a fluidized suspension, Chem. Eng. Sci., 42 (1987) 1269-1271,
  • [15] L. MAZZEI, P. LETTIERI, T. ELSON, D. COLMAN, A revised mono - dimensional particle bed model for fluidized beds, Chem. Eng. Sci., 61 (2006) 1958-1972,
  • [16] R. DI FELICE, On the voidage function in two - phase multiparticle systems, Int. J. Multiphase Flow, 20(1994) 153-159.
  • [17] F, BARNEA, J. MIZRAHI, A generalized approach to the fluid dynamics of particulate systems. Part I, General correlation for fluidization and sedimentation in solid multiparticle systems, Chem. Eng. J., 5 (1973) 171-189,
  • [18] G.K. BATCHELOR, Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., 52 (1972) 245-268,
  • [19] C.C. REED, J.L. ANDERSON, Hindered settling of a suspension at low Reynolds number, AIChE J., 26 (1980) 816-827.
  • [20] J. HAPPEL, Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles, AIChE J., 4 (1958) 197-201.
  • [21] C.S, ROBINSON, Some factors influencing sedimentation, Ind. Eng. Chem., 18 (1926) 869-871.
  • [22] H.H. STEINOUR, Rate of sedimentation - nonflocculated suspensions of uniform spheres, Ind. Eng. Chem., 36(1944)618-624.
  • [23] P.G.W. HAWKSLEY, The effect on concentration on the settling of suspensions and flow through porous media, In: Some Aspects of Fluid Flow, Institute of Physics and Edward Arnold, London, (1951)114-135.
  • [24] N. ZUBER, On the dispersed two - phase flow in the laminar flow regime, Chem. Eng. Sci., 19 (1964) 897-917.
  • [25] R. LETAN, On vertical dispersed two-phase flow, Chem. Eng. Sci., 29 (1974) 621-624.
  • [26] M, ISHII, N. ZUBER, Drag Coefficient end Relative Velocity in Bubbly, Droplet or Particulate Flows, AIChE, J., 25 (1979) 843-855.
  • [27] V. S. PATWARDHAN, CHI TIEN, Sedimentation and Fluidization in Solid - Liquid Systems: a Simple Approach, AIChE J., 31 (1985) 146-149.
  • [28] F.A.L. DULLIEN, Single phase flow through porous media, Chem. Eng. J., 10 (1975) 1-34.
  • [29] F. BARNEA, R.L. MEDNICK, A generalized approach to the fluid dynamics of particulate systems, Part III. General correlations for the pressure drop through fixed beds of spherical particles, Chem. Eng. J., 15 (1978) 215-227.
  • [30] P.C. CARMAN, Fluid flow through granular beds, Trans. Instn. Chem. Engrs, 15 (1937) 150-166.
  • [31] S.P. BURKE, W.B. PLUMMER, Gas flow through packed columns, Ind. Eng. Chem., 20 (1928) 1196-1200.
  • [32] S. ERGUN, Fluid flow through packed columns, Chem. Eng. Progr., 48 (1952) 89-94.
  • [33] P.U. FOSCOLO, L.G. GIBILARO, S.P. WALDRAM, A unified model for particulate expansion of fluidised beds and flow in fixe porous media, Chem. Eng. Sci., 38 (1983) 1251-1260.
  • [34] L.G. GIBILARO, R. DI FELICE, S.P. WALDRAM, P.U. FOSCOLO, Generalized friction factor and drag coefficient correlations for fluid - particle interactions, Chem. Eng. Sci., 40 (1985) 1817-1823.
  • [35] L.G. GIBILARO, R. DI FELICE, S.P. WALDRAM, P.U. FOSCOLO, A predictive model for the equilibrium composition and inversion of binary - solid liquid fluidized beds, Chem. Eng. Sci., 41 (1986)379-387.
  • [36] P.N. ROWE, Drag force in a hydraulic model of a fluidised bed, Part II, Trans. Instn. Chem. Engrs, 39 (1961) 175-180.
  • [37] P.N. ROWE, G.A HENWOOD, Drag force in a hydraulic model of a fluidised bed, Part I, Trans. Instn Chem. Engrs, 39 (1961) 43-54,
  • [38] C.Y. WEN, Y.H. YU, Mechanics of Fluidization, Chem. Eng. Progr, Symp. Ser., 62 (1966) 100-111.
  • [39] A. KMIEĆ, Some remarks on the Richardson - Zaki equation, Chem. Eng. J., 11, 3 (1976) 237-238,
  • [40] A. KMIEĆ, Equilibrium of forces in a fluidized bed - experimental verification, Chem. Eng. J., 23 (1982) 133-136.
  • [41] V.D. GOROSKO, R.B. ROZENBAUM, O.M. TODES, Izv, Vuzov, Neft i Gaz, No, 1 (1958) 125.
  • [42] A. KMIEĆ, S. MIELCZARSKI, Hydrodynamika układu fluidalnego ciecz-ciało stałe w aparacie płaskim, Inż. Chem., T.4, z.3 (1983) 517-527.
  • [43] J. YANG, A, RENKEN, A generalized correlation for equilibrium of forces in liquid - solid fluidized beds, Chem. Eng. J., 92 (2003) 7-14.
  • [44] O. MOLERUS, A coherent representation of pressure drop in fixed beds and of bed expansion for particulate fluidized beds, Chem. Eng. Sci.., 35 (1980) 1331-1340.
  • [45] J.P. COUDERC, Incipient fluidization and particulate systems, Fluidization, 2nd edition (Edited by J.F. Davidson, R. Gift, D. Harrison), 1-46, Academic Press, London, 1985.
  • [46] R. LIMAS-BALLESTEROS, J.P. RIBA, J.P. COUDERC, Entropie, 106 (1982) 37.
  • [47] C.Y. WEN, Y.H. YU, A Generalized Method for Predicting the Minimum Fluidization Velocity, AIChE J., 12.3(1966) 610-612.
  • [48] J.P. RIBA, R. ROUTIE, J.P. COUDERC, Can. J. Chem. Eng., 56 (1978) 26.
  • [49] J.F. RICHARDSON, W.N. ZAKI, Sedimentation and Fluidisation: Part I, Trans, Instn Chem. Engrs, 32 (1954) 35-53.
  • [50] A. KMIEĆ, On modelling of solid - liquid fluidized beds, Chem. Eng. J., 9, 3 (1975) 251-253.
  • [51] A. KMIEĆ, Particle distributions and dynamics of particle movement in solid - liquid fluidized beds, Chem. Eng. J. (Lausanne), 15 (1978) 1-12,
  • [52] D.A. HANDLEY i inni, A Study of the fluid and particle mechanics in liquid fluidised beds, Trans.Inst, Chem. Eng., 44 (1966) T. 2, 60,
  • [53] CR. CARLOS, J.F. RICHARDSON, Solid movement in liquid fluidised beds, I: Particle velocity distribution, Chem. Eng. Sci.., 23 (1968) 813,
  • [54] B.A. J. LATIFF, J.F. RICHARDSON, Circulation partterns and velocity distributions for particles in a liquid fluidised bed, Chem. Eng. Sci.., 27 (1972) 1933,
  • [55] J.B. JOSHI, Solid - liquid fluidised beds: Some design aspects, Chem. Eng. Res. Dev., 61 (1983) 143-161.
  • [56] A.R, KHAN, J.F, RICHARDSON, Fluid - particle interactions and flow characteristics offluidized beds and settling suspensions of spherical particles, Chem. Eng. Commun., 78 (1989) 111- 130.
  • [57] A.R. KHAN, J.F. RICHARDSON, Pressure gradient and friction factor for sedimentation and fluidisation of uniform spheres in liquids, Chem. Eng. Sci.., 45 (1990) 255-265.
  • [58] J. GARSIDE, M.R. AL, - DIBOUNI, Velocity - voidage relationship for fluidization and sedimentation, Ind. Eng. Chem. Proc. Des. Develop., 16, 2 (1977)206-213.
  • [59] P. ZEHNER, Beschreibung der Fluidmechanik von gleichmaessig fluidisierten Kugelschwaermen, Chem. Eng. Process, 19 (1985) 57-65: Chem. – Ing. - Tech., 57, 3 (1985) 237-239.
  • [60] M. HARTMAN, D. TRNKA, V. HAVLIN, A relationship to estimate the porosity in liquid - solid fluidized beds, Chem. Eng. Sci.., 47 (1992)3162-3166.
  • [61] M. JAMIALAHMADI, H. MULLER-STEINHAGEN, Bed voidage in annular solid - liquid fluidized beds, Chem. Eng. Process., 31 (1992) 221-227.
  • [62] N. EPSTEIN, The Voidage Function for the Drag Force Ratio in a Liquid - Fluidized Bed, Can. J. Chem. Eng., 83, 3 (2005) 566-572.
  • [63] W.K. LEWIS, E.R. GILLILAND, W. BAUER, Characteristics of Fluidized Particles, Ind. Eng. Chem., 41 (1949) 1104-1117.
  • [64] E.W. LEWIS, E.W. BOWERMAN, Fluidization of Solid Particles in Liquids, Chem. Eng. Progr., 48(1952) 603-611.
  • [65] Y.S. CHONG, D.A. RATKOWSKY, N. EPSTEIN, Effect of particle shape on hindered settling in creeping flow, Powder Technol., 23 (1979) 55-66.
  • [66] P.N. ROWE, A convenient empirical equation for estimation of the Richardson - Zaki exponent, Chem. Eng. Sci.., 43 (1987) 2795-2796,
  • [67] C.R. THOMAS, J.G. YATES, Expansion index for biological fluidised beds, Chem. Eng. Res. Des., 63 (1985)67-70.
  • [68] E. VAN ZESSEN, J. TRAMPER, A. RINZEMA, H.H. BEEFTINK, Fluidized - bed and packed -bed characteristic of gel beads, Chem. Eng. J., 115 (2005) 103-111.
  • [69] P.U. FOSCOLO, L.G. GIBILARO, Fluid dynamic stability of fluidised suspensions: the particle bed model, Chem. Eng. Sci.., 42 (1987) 1489-1500.
  • [70] M. POLETTO, P. SALATINO, L. MASSIMILLA, Fluidization of solids with CO2 at pressures and temperatures ranging from ambient to nearly critical conditions, Chem. Eng. Sci., 48 (1993) 617-621.
  • [71] V.L,. SCHILLER, A. NAUMANN, Ueber die grundlegenden Berehnungen bei der Schwerkraftaufbereitung, Zeitschr. Ver. Deut. Ing., 77, 12 (1933) 318-320.
  • [72] K. RAMAMURTHY, K. SUBBARAJU, Bed expansion characteristics of annular liquid - fluidized beds, Ind. Eng. Chem. Process. Des. Dev., 12 (1973) 184-189.
  • [73] R.H. WILHELM, M. KWAUK, Fluidization of Solid Particles, Chem. Eng. Progr., 44 (1948) 201-217.
  • [74] J.P. RIBA, J.P. COUDERC, Expansion de couches fluidisees par des liquides, Can. J. Chem. Eng., 55(1977)118-121.
  • [75] S. RAPAGNA, R. DI FELICE, L.G. GIBILARO, P.U. FOSCOLO, Steady - state expansion characteristics of monosized spheres fluidised by liquids, Chem. Eng. Commun., 79 (1989) 131-140.
  • [76] Z.B. GRBAVCIC, R.V. GARIC, DZ.E, HADZISMAJLOVIC, S. JANOVIC, D.V. VUKOVIC, H. LITTMAN, M.H. MORGAN III, Variational model for prediction of the fluid - particle interphase drag coefficient and particulate expansion of fluidized and sedimenting beds, Powder Technol., 68 (1991) 199-211.
  • [77] Z, FAN, Z. XUANYU, X. LICHUANG, Particulate fluidization of uniformy sized spheres, In: Fluidization'85 Conference Papers 2nd China-Japan Symposium, ed, M. Kwauk, D. Kunii, Z. Jiansheng, M. Hasatani, (1985) pp, 283-294,
  • [78] J.F. RICHARDSONA, J.W. SMITH, Heat transfer to liquid fluidised systems and to suspensions of coarse particles in vertical transport, Trans. Instn Chem. Engrs, 40 (1962) 13-22,
  • [79] L.G. GIBILARO, I. HOSSAIN, P.U. FOSCOLO, Aggregate Behaviour of Liquid Fluidised Beds, Can. J. Chem. Eng., 64 (1986) 931-938,
  • [80] R. DI FELICE, Liquid fluidisation of binary - solid mixtures, PhD Thesis, University of London, 1988,
  • [81] J.F. RICHARDSON, Incipient Fluidization and Particulate Systems, In: Fluidization, ed, J.F. Davidson, D. Harrison, Academic Press, New York, 1971, 25-64,
  • [82] I. YOUCHOU, M. KWAUK, The Dynamics of Fast Fluidization, In: Fluidization, ed, J.R, Grace, J.M. Matsen, Plenum Press, New York, 1980, 537-544,
  • [83] A.H. DHARMARAJAH, J.L. CLEASBY, Predicting the expansion behavior of filter media, J. AWWA, 78 (1986) 66-76,
  • [84] R.L. WHITMORE, The relationship of the viscosity to the settling rate of slurries, J. Instn Fuel, 30 (1957)238-242.
  • [85] A.E. FOUDA I C.E. CAPES, Hydrodynamic Particle Volume and Fluidized Bed Expansion, Can. J. Chem. Eng., 55 (1977) 386-391.
  • [86] H.H. STEINOUR, Rate of sedimentation - suspensions of uniform - size angular particles, Ind. Eng. Chem., 36 (1944) 840-847.
  • [87] R. DI FELICE, P.U. FOSCOLO, L.G. GIBILARO, G.B. WALLIS, R. CARTA, Expansion Characteristics of Tapered Fluidized Beds, AIChE J., 37 (1991) 1668-1672.
  • [88] V. KOLAR, Fluidization of solid particles by liquid in conical vessels, Coll. Czech. Chem. Commun., 28 (1963) 1224-1231.
  • [89] T. KOLOINI, E.J. FARKAS, Fixed Bed Pressure Drop and Liquid Fluidization in Tapered or Conical Vessels, Can. J. Chem. Eng., 51 (1973) 499-502.
  • [90] T. MARUYAMA, H. MAEDA, T. MIZUSHINA, Liquid Fluidization in Tapered Vessels, J. Chem. Eng. Japan, 17 91984) 132-139.
  • [91] G.H. WEBSTER, J.J. PERONA, The Effect of Taper Angle on the Hydrodynamics of a Tapered Liquid - Solid Fluidized Bed, AIChE Symp. Syr., 86 (1990) 104-112.
  • [92] P.U. FOSCOLO, L.G, G1BILARO, A fully predictive criterion for the transition between particulate and aggregate fluidisation, Chem. Eng. Sci., 39 (1984) 1667-1675.
  • [93] G.K. BATCHELOR, A new theory of the instability of a uniform fluidized bed, J. Fluid Mech., 193 (1988) 75 110.
  • [94] E.J. CAIRNS, J.M. PRAUSNITZ, Macroscopic Mixing in Fluidization, AIChE J., 6 (1960) 554-560,
  • [95] N.J. HASSET, Flow patterns in particle beds, Nature, 189 (1961) 997-998,
  • [96] N.J. HASSET, The mechanics of fluidization, Brit. Chem. Engng. 19 (1961) 777-780,
  • [97] A. LAWSON, N.J. HASSET, Discontinuities and flow patterns in liquid - fluidized beds, Proceedings of Int. Symposium on Fluidization, Ed, A.A.H. Drinkenburg, Netherlands University Press, Amsterdam, 1967, 113-122,
  • [98] M.M. EL - KAISSY, G.M. HOMSY, Instability waves and the origin of bubbles in fluidized beds Part 1, Experiments, Int. J. Multiphase Flow, 2 (1976)379-395,
  • [99] A.K. DIDWANIA, G.M. HOMSY, Flow regimes and flow transitions in liquid fluidized beds, Int. J. Multiphase Flow, 7 (1981) 563-580,
  • [100] H.C. SIMPSON, B.W. RODGER, The fluidization of light solids by gas under pressure and heavy solids by water, Chem. Eng. Sci., 16(1961) 153-180,
  • [101] V.P. KELLY, Hydraulic studies for the fluid - bed reactor, Nuclear Sci. Engng. 10 (1961) 40-44,
  • [102] L.G. GIBILARO, R. DI FELICE, P.U. FOSCOLO, S.P. WALDRAM, Fluidization quality: a criterion for the indeterminate stability, Chem. Eng. J., 37 (1988) 25-33,
  • [103] D. HARRISON, J.F. DAVIDSON, J.W. DE KOCK, On the nature of aggregative and particulate fluidisation, Trans. Instn Chem. Engrs, 39 (1961) 202-211,
  • [104] L.G. GIBILARO, R. DI FELICE, P.U. FOSCOLO, Added mass effect in fluidised beds: application of the Guerst- Wallis analysis of inertial coupling in two-phase flow, Chem. Eng. Sci., 45 (1990) 1561-1565,
  • [105] P. SINGH, D.D. JOSEPH, Finite size effect in fluidized beds, A.H.P.C.R.C, Preprint 91-60. University of Minnesota, Minneapolis, 1991,
  • [106] J. WOJCIK, Sedymentacja w krystalizatorze fluidalnym, Inż. Chem. Proc., 3 (1995) 441-455,
  • [107] N. EPSTEIN, Teetering, Powder Technol., 151 (2005)2-14, Erratum: Powder Technol., 155(2005) 159,
  • [108] N. EPSTEIN, Applications of Liquid - Solid Fluidization, Int. J. Chem. Reactor Engng, Vol. 1 (2002) Al,
  • [109] X. HU, J.M. CALO, Plastic Particle Separation via Liquid - Fluidized Bed Classification, AIChE J., 52, 4 (2006) 1333-1341,
  • [110] G.K. BATCHELOR, Sedimentation in a dilute polydisperse system of interacting spheres, Part 1. General theory, J. Fluid Mech., 119 (1982) 379-408,
  • [Ill] G.K. BATCHELOR, C.S. WEN, Sedimentation in a dilute polydisperse system of interacting spheres, Part 2, Numerical results, J. Fluid Mech., 124 (1982) 495-528,
  • [112] M.A. AL. - NAAFA, S.M. SELIM, Sedimentation of Monodisperse and Bidisperse Hard – sphere Colloidal Suspensions, AIChE J., 38 (1992) 1618-1630,
  • [113] J.F. RICHARDSON, F.A. SHABI, The determination of concentration distribution in a sedimenting suspension Rusing radio - active solids, Trans. Instn Chem. Engrs, 38 (1960) 33-42,
  • [114] S.C. KENNEDY, R.H. BRETTON, Axial Dispersion of Spheres Fluidized With Liquids, AIChE J., 12 (1966) 24-30.
  • [115] M.J. LOCKETT, H.M. AL - HABBOOBY, Differential settling by size of two particle species in a liquid, Trans Instn Chem. Engrs, 51 (1973) 281-292,
  • [116] M.J. LOCKETT, H.M. AL - HABBOOBY, Relative particle velocities in two - species settling, Powder Technol., 10(1974) 67-71,
  • [117] J.H. MASLIYAH, Hindered settling in a multi - species particle system, Chem. Eng. Sci., 34 (1979)1166-1168.
  • [118] V.S. PATWARDHAN, C. TIEN, Sedimentation and liquid fluidization of solid particles of different sizes and densities, Chem. Eng. Sci.., 40, 7 (1985) 1051-1060,
  • [119] R. DI FELICE, P.U. FOSCOLO, L.G. GIBILARO, S. RAPAGNA, The interaction of particles with a fluid - particle pseudo-fluid, Chem. Eng. Sci., 46 (1991) 1873-1877,
  • [120] B.L.A. MARTIN, Z. KOLAR, J.A. WESSELINGH, The falling velocity of a sphere in a swarm of different spheres, Trans. Instn Chem. Engrs, 59 (1981) 100-104, [121] V.S. PATWARDHAN, C. TIEN, Distribution of Solid Particles In Liquid Fluidized Beds, Can. J. Chem. Eng., 62 (1984) 46-54,
  • [122] R.H. RICHARDS, C.E. LOCKE, Textbook of Ore Dressing, McGraw - Hill, London, 1940,
  • [123] R.J. WAKEMAN, P.W. STOPP, Fluidization and segregation of binary particle mixtures, Powder Technol., 13(1976)261-268,
  • [124] J.L. CLEASBY, C.F. WOODS, Intermixing of dual media and multimedia granular filters, J. American Water Works Assoc., 67 (1975) 197-203,
  • [125] G. VAN DUIJN, K. RIETEMA, Segregation of liquid - fluidized solids, Chem. Eng. Sci.., 37 (1982)727-733.
  • [126] H,. MORITOMI, T. IWASE, T. CHIBA, A comprehensive interpretation of solid layer inversion in liquid fluidized beds, Chem. Eng. Sci., 37 (1982) 1751-1757.
  • [127] N. EPSTEIN, B.P. LECLAIR, Liquid fluidisation of binary particle mixtures, II, Bed inversion, Chem. Eng. Sci., 40 (1985) 1517-1526.
  • [128] A. MATSUURA, T. AKEHATA, Distribution of solid particles and bed expansion in a liquid fluidized bed containing a binary mixture of particles, 50th Annual Meeting of Soc, Of Chem. Engrs of Japan, Yokohama, 28-30 March, Paper c - 108.
  • [129] R.H. JEAN, L.S. FAN, On the criteria of solids layer inversion in a liquid - solid fluidized bed containing a binary, mixture of particles, Chem. Eng. Sci., 41 (1986) 2811-2821.
  • [130] L.A.M. VAN DER WIELEN, M.H.H. VAN DAM, K.CH.M. LUYBEN, On the relative motion of a particle in a swarm of different particles, Chem. Eng. Sci., 51, 6 (1996) 995-1008.
  • [131] R. DI FELICE, The applicability of the pseudo - fluid model to the settling velocity of a foreign particle in a suspension, Chem. Eng. Sci., 53, 2 (1998) 371-375.
  • [132] N. EPSTEIN, B.B. PRUDEN, Liquid fluidisation of binary, particle mixtures - III, Stratification by size and related topics, Chem. Eng. Sci., 54 (1999) 401-415.
  • [133] R. ESCUDIE, N. EPSTELN, J. R. GRACE, H.T. BI, Effect of particle shape on liquid - fluidized beds of binary and ternary) solids mixtures: segregation vs mixing, Chem. Eng. Sci., 61 (2006) 1528-1539.
  • [134] S. BHATTACHARYYA, B.K. DUTTA, Effective Voidage Model of a Binary Solid - Liquid Fluidized Bed, Ind. Eng. Chem. Res., 41 (2002) 5098-5108.
  • [135] S. BHATTACHARYYA, B.K. DUTTA, On Mixing and Segregation in Binary Solid - Liquid Fluidized Beds, Ind. Eng. Chem. Res., 43 (2004) 7129-7136.
  • [136] M.A. HOWLEY, B.J. GLASSER, Hydrodynamics of a uniform liquid - fluidized bed containing a binary mixture of particles, Chem. Eng. Sci., 57 (2002) 4209-4226.
  • [137] M.C. RUZICKA, On buoyancy in dispersion, Chem. Eng. Sci., 61 (2006) 2437-2446.
  • [138] B.B. PRUDEN, N. EPSTEIN, Stratification by size in particulate fluidisation and in hindered settling, Chem. Eng. Sci., 19 (1964) 696-700.
  • [139] N. EPSTEIN, B.P. LECLAIR, B.B. PRUDEN, Liquid fluidisation of binary particle mixtures, I. Overall bed expansion, Chem. Eng. Sci., 36 (1981) 1803-1809.
  • [140] E.J. CAIRNS, J.M. PRAUSNITZ, AIChE J., 6 (1960) 554.
  • [141] H. KRAMERS, M.D. WESTERMANN, J.H. DE GROOT, F.A.A. DUPONT, Proc, Symp. Interact, Fluids Part., (1962) p. 114.
  • [142] C. BRUINZEEL, G.H. REMAN, E.T. VAN DER LAAN, Proc. Symp. Interact. Fluids Part., (1962) 120.
  • [143] D.J. GUNN, Chem. Eng. (London), 219 (1968) CE153.
  • [144] T.J. HANRATTY, G. LATINEN, R.H. WILHELM, AIChE J., 2 (1956) 372.
  • [145] V. VANECEK, R.L. HUMMEL, Inst, Chem. Eng. Symp. Ser., 30 (1968) 190.
  • [146] E.J. RYAN, R.L. HUMMEL, J.W. SMITH, Chem. Eng. Prog., Symp. Ser., 66, No, 101 (1970) 52,
  • [147] S, LIMTRAKUL, J. CHEN, P.A. RAMACHANDRAN, M.P. DUDUKOVIĆ, Solids motion and holdup profiles in liquid fluidized beds, Chem. Eng. Sci., 60 (2005) 1889-1900,
  • [148] N. EPSTEIN, Liquid - solids fluidization, Chapter 26, in: W.C. Yang, Ed., Handbook of Fluidization and Fluid - Particle Systems, Marcel Dekker, New York, 2003, 705-764,
  • [149] P.N. ROWE, K.T. CLAXTON, Trans. Instn. Chem. Engrs., 43 (1965) T. 320.
  • [150] P. TOURNIE, C. LAGUERIE, J.P. COUDERC, Chem. Eng. Sci., 32 (1977) 1259; 34 (1979) 1247-1255.
  • [151] G.C. SHEN, C.J. GEANKOPLIS, R.S. BRODKEY, A note on particle - liquid mass transfer in a fluidized bed of small irregular - shaped benzoil acid particles, Chem. Eng. Sci., 40, 9 (1985) 1797-1802.
  • [152] K. RAHMAN, M. STREAT, Mass transfer in fixed and fluidized beds, Chem. Eng. Sci., 40, 9 (1985)1783-1785.
  • [153] M. HAID, H. MARTIN, H. MUELLER-STEINHAGEN, Heat transfer to liquid - solid fluidized beds, Chem. Eng. Process., 33 (1994) 211-225,
  • [154] O. LACIN, H. SARAC, Measurements of mass transfer rates in a rectangular liquid fluidised bed using LCDT, Powder Technol., 152 (2005)9-15.
  • Rozdział 3
  • [1] P.U. FOSCOLO, LG. GIBILARO, R. DI FELICE, Appl, Sci. Res, 48 (1991) 315
  • [2] S. BRANDANI, P.U. FOSCOLO, Chem. Eng. Sci., 49 ( 1994) 611.
  • [3] M. HARTMAN, Z. BERAN, K. SVOBODA, V. VESELY, Operation regimes of fluidized beds, Collect. Czech, Chem. Commun, 60 (1995) 1-33.
  • [4] D. GELDART, Types of gas fluidization, Powder Technol., 7 (1973) 285-292,
  • [5] P.D. MARTIN, Chem. Eng. Res, & Des., 61 (1983)318.
  • [6] M. SCIĄŻKO, J. BANDROWSKI, Chem Eng. Sci., 40(1985) 1861.
  • [7] O. MOLERUS, Powder Technol, 33 (1982) 81
  • [8] K. RIETEMA, Powder Technol., 37 ( 1984) 5.
  • [9] J. WERTHER, Stroemungsmechanische Grundlagen der Wirbelschichttechnik, Chem.-Ing.-Tech., 49, 3(1977) 193-202.
  • [10] M.J. SAN JOSE, M. OLAZAR, P.L., BENITO, J. BILBAO, Hydrodynamics and Expansion of Fluidized Beds of Coarse Particles, Trans IChemE, Vol, 73, Part A, May 1995, 473-479.
  • [11] J.P, COUDERC, Incipient fluidization and particulate systems, Fluidization, 2nd edition (edited by J.F, Davidson, R, Clift, D. Harrison), Academic Press, London, 1985, 1-46,
  • [12] S. ERGUN, Fluid flow through packed columns, Chem. Eng. Progr., 48 (1952) 89-94.
  • [13] C.Y. WEN, Y.H. YU, Mechanics of Fluidization, Chem. Eng. Progr, Symp, Ser., 62 (1966) 100-111.
  • [14] C.Y. WEN, Y.H. YU, A Generalized Method for Predicting the Minimum Fluidization Velocity, AIChE J. 12, 3 (1966)610-612.
  • [15] V. THONGLIMP, Docteur-ingenieur thesis, Institut National Polytechnique, Toulouse, 1981.
  • [16] Z. BIS, Wpływ rozmiarów geometrycznych warstwy materiału sypkiego na warunki jej przejścia w stan fluidyzacji, Inż. Chem. Proc., 3 (1986) 459-470.
  • [17] W.C. YANG, A Generalized Methodology for Estimating Minimum Fluidization Velocity at Elevated Pressure and Temperature, AIChE J., 31, 7 (1985) 1086-1092.
  • [18] F. BARNEA, J. MIZRAHI, A generalized approach to the fluid dynamics of particulate systems, Part I, General correlation for fluidization and sedimentation in solid multiparticle systems, Chem. Eng. J., 5 (1973) 171-189.
  • [19] F. BARNEA, R.L. MEDNICK, Correlation for Minimum Fluidization Velocity, Trans. Inst. Chem. Engrs, 53 (1975)278,
  • [20] J.R. GRACE, Can. J. Chem. Eng., 64 (1986) 353.
  • [21] L. DAVIES, J.F. RICHARDSON, Trans. Inst. Chem. Engrs, 444 (1966) 293.
  • [22] J.F. RICHARDSON, W.N. ZAKI, Sedimentation and Fluidisation Part I, Trans. Instn. Chem. Engrs, 32(1954)35-53.
  • [23] AR. ABRAHAMSEN, D. GELDART, Powder Technol., 26 (1980) 35,
  • [24] G.B WALLIS, One-Dimensional Two-phase Flow, Mc-Graw Hill, New York, 1969, 21,
  • [25] D. KUNII, O. LEVENSPIEL, Fluidization Engineering, 2nd edition, Butterworth-Heinemann, Boston, 1991, 10.
  • [26] T.E. BROADHLURST, H.A. BECKER, AIChE J., 21 (1975) 238.
  • [27] L. MAZZEI, P. LETTIERI, T. ELSON, D. COLMAN, A revised mono-dimensional particle bed model for fluidized beds, Chem. Eng. Sci., 61 (2006) 1958-1972.
  • [28] P.U. FOSCOLO, L.G. GIBILARO, S.P. WALDRAM. A unified model for particulate expansion of fluidised beds and flow in fixe porous media, Chem. Eng. Sci., 38 (1983) 1251-1260.
  • [29] R.H. JEAN, L.S. FAN, On the model equations of Gibilaro and Foscolo with corrected buoyancy force, Powder Technol., 72 (1992) 201.
  • [30] J.F. DAVIDSON, D. HARRISON, in: Fluidization (edited by J.F. Davidson, D. Harrison), Academic Press, London, 1978, 148.
  • [31] K. HILLIGARDT, J. WERTHER, Ger. Chem. Eng., 9 (1986) 215.
  • [32] S. MORI, C.Y. WEN, AIChE J., 21 (1975) 109.
  • [33] R.R. CRANFIELD, D. GELDART, Chem. Eng. Sci., 29 (1974)935.
  • [34] N.M. CATIPOVIC, G.N. JOVANOVIC, T.J. FITZGERALD, AIChE J., 24 (1978) 543.
  • [35] T.E. BROADHURST, H.A, BECKER, AIChE J., 21 (1975) 238.
  • [36] R, KOCH, Procesy mechaniczne w inżynierii chemicznej, Wrocław 1984, 105.
  • [37] J. BAYENS, D. GELDART, Chem. Eng. Sci., 29 (1974)225.
  • [38] K.P. LANNEAU, Gas-solid contacting in fluidized beds, Trans. Inst. Chem. Engrs., 38(1960) 125-127.
  • [39] M. HORIO, H. ISHII, M. NISHIMURO, On the nature of turbulent and fast fluidized beds, Powder Technol., 70 (1992) 229-236.
  • [40] M. RHODES, What is turbulent fluidization?, Powder Technol., 88 (1996) 3-14.
  • [41] H.T. BI, N. ELLIS, I.A. ABBA, J.R. GRACE, A state-of-the-art review of gas-solid turbulent fluidization, Chem. Eng. Sci., 55 (2000) 4789-4825.
  • [42] W.C. YANG, Mechanistic Models for Transitions between Regimes of Fluidization, 75th AIChE Annual Meeting, Los Angeles, California, Nov, 14-18, 1982.
  • [43] W.C YANG, AIChE J., 30 (1984) 1025.
  • [44] J.R. GRACE, Contacting Models and Behavior Classification of Gas-Solid and Other Two-Phase Suspensions, Can. J. Chem. Eng., 64, 6 (1986) 353-363,
  • [45] C.M. BRERETON, J.R. GRACE, Trans. Instn. Chem. Engrs., 70 (1992) 246.
  • [46] A. SVENSSON, F. JOHNSSON, B. LECKNER, Fluidization regimes in non-slugging fluidized beds: The influence of pressure drop across the air distributor, Powder Technol., 86 (1996) 299-312.
  • [47] R. YAMAZAKI, M. ASAI, M. NAKAJIMA, G, JIMBO, Characteristics of transition regime in a turbulent fluidized bed, Proc, of 4th China-Japan Fluidization Conference, Beijing, China, Science Press (1991) 720-725.
  • [48] A. CHEHBOUNI, J. CHAOUKI, C. GUY, D. KLVANA, Characterization of the Flow Transition between Bubbling and Turbulent Fluidization, Ind. Eng. Chem. Res., 33 (1994) 1889-1896.
  • [49] R.C. ZIJERVELD, F. JOHNSSON, A. MARZOCCHELLA, J.C SHOUTEN, C.M. VAN DEN BLEEK, Fluidization regimes and transitions from fixed bed to dilute transport flow, Powder Technol., 95 (1998) 185-204.
  • [50] H.T. BI, J.R. GRACE, Effects of Pressure and Temperature on Flow Regimes in Gas-Solid Fluidization Systems, Can. J. Chem. Eng., 74, 6 (1996) 1025-1027.
  • [51] M. GIERCE, Theoretische ldentifizierung einer Transportgeschwindigkeit fuer Gas/Feststoff-Wirbełschichten, Chem.-Ing.-Tech., 65(1993)Nr, 3, 314-317.
  • [52] R.ANDREUX, T. GAUTHIER, J. CHAOUKI, O. SIMONIN, New Description of Fluidization Regimes, AIChE J., 51,4(2005) 1125-1130.
  • [53] M. SCIĄŻKO, J. BANDROWSKI, Wywiewanie cząstek materiału sypkiego ze złoża fluidalnego, Inż, Ap, Chem., R, 25 nr 6 (1986) 12-15.
  • [54] M. ŚCIĄZKO, J. RACZEK., J. BANDROWSKI, Model of Gas Flow above a Bubbling Fluidized Bed: Prediction of Splash Zone Height, Chem. Eng. Process., 24 (1988) 49-55.
  • [55] L. MASSIMILLA, J.W. WESTWATER, Photographic Study of Solid-Gas Fluidization, AIChE J., 6 (1960)134.
  • [56] N. SZMOLKE, Metoda oceny struktury hydraulicznej złoża fluidalnego, praca doktorska, Instytut Inżynierii Chemicznej PAN, Gliwice 1996.
  • [57] N. SZMOLKE, R. ULBRICH, Metoda oceny struktury hydraulicznej klasycznego złoża fluidalnego, Inż., Chem. Proc, 20 (1999) 55-72.
  • [58] N. SZMOLKE, R. ULBRICH, Metoda oceny struktury hydraulicznej cyrkulacyjnego złoża fluidalnego, Inż. Chem. Proc, 20 (1999) 73-88.
  • [59] A. LANCIA, R. NIGRO, G. VOLPICELLI, L. SANTORO, Transition from slugging to turbulent flow regimes in fluidized beds detected by means of capacitance probes, Powder Technol., 56 (1988) 49-56.
  • [60] Y.T. MAKKAWI, P.C. WRIGHT, Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography, Chem. Eng. Sci., 57 (2002) 2411-2437.
  • [61] R.C. LIRAG, H. LITTMAN, Statistical Study of the Pressure Fluctuations in a Fluidized Bed, AIChE Symp., Ser. 67, 116 (1971) 11.
  • [62] K. TANNOUS, M. HEMATI, C. LAGUERIE, Identification of flow regime transitions in fluidized beds of large particles by pressure drop fluctuation measurements, Braz. J. Chem. Eng., 13 (1996) 168-181.
  • [63] D. BAI, E. SHIBUYA, N. NAKAGAWA, K. KATO, Characterization of gas fluidization regimes using pressure fluctuations, Powder Technol.,87 (1996) 105-111.
  • [64] H.Y. XIE, D. GELDART, The response time of pressure probes, Powder Technol., 90 (1997) 149-151.
  • [65] H. CUI, N. MOSTOUFI, J. CHAOUKI, Characterization of dynamic gas-solid distribution in fluidized beds, Powder Technol., 79 (2000) 133-143.
  • [66] J. BAYLE, P. MEGE, T. GAUTHIER, Dispersion of bubble flow properties in a turbulent FCC fluidized bed, Proc, of 10th Engineering Foundation Conference, Fluidization X, M. Kwauk et al, editors, Beiging, China (2001) 125-132.
  • [67] A. GONZALEZ, J. CHAOUKI, A. CHEHBOUNI, Effect of temperature on the onset of turbulent fluidization, Proc, of 8th International Symposium of the Engineering Foundation, Fluidization VIII, Tours, France (1995).
  • [68] J. ARNALDOS, J. CASAL, Prediction of transition velocities and hydrodynamical regimes in fluidized beds, Powder Technol., 86 (1996) 285-298.
  • [69] K. YOSHIDA, H. MINEO, in: Transport Processes in engineering, I. Transport In Fluidized Particle Systems, eds, L.K. Doraiswamy, AS. Mujumdar, Elsevier, Amsterdam, 1989, 241-285.
  • [70] M. NAKAJIMA, M. HARADA, M. ASAI, G. JIMBO, in: Circulating Fluidized Bed Technology, Eds, P. Basu, M. Horio, M. Hasatani, Pergamon Oxford, 1991, 79-84.
  • [71] J.F. PERALES, T. COLL, M.F, LLOP, L. PUIGJANER, J. ARNALDOS, J. CASAL, in: Circulating Fluidized Bed Technology-, Eds, P, Basu, M. Horio, M. Hasatani, Pergamon, Oxford, 1991, 73-78.
  • [72] J. ADANEZ, L.F. DIEGO, P. GAYAN, Powder Technol., 77 (1993) 61.
  • [73] J. YERUSHALMI, N.T., CANKURT, Powder Technol., 24 (1979) 187.
  • [74] F. STAUB, G.S. CANADA, In: Fluidization, eds. J.F Davidson, D.L. Keairns, Cambridge University Press, 1978, 339,
  • [75] H. BI, L.S. FAN, AIChE J., 38 (1992) 297.
  • [76] M. KWAUK, N. WANG, Y. LI, B. CHEN, Z, SHEN, Circulating Fluid Bed Technology, ed. P. Basu, Pergamon Press, 1986, 33.
  • [77] S. DUTTA, B.R. CHRISTIAN, M.F. RATERMAN, Circulating Fluid Bed Reactor Model Developed For FCC/Art, Regenerator, In: Fluidization VI, Proceedings of the Int. Conference on Fluidization of the Engineering Foundation, Banff, Alberta, Canada, May 7-12, 1989, ed. J.R. Grace, L.W. Shemilt, M.A. Bergougnou, 9-16.
  • [78] A. KMIEĆ, Analysis of the gas-solid flow in a riser reactor, Applied Mechanics & Engineering, 2, 1 (1997) 133-152.'
  • [79] Z. MINDZIUL, A. KMIEĆ, Modelling Gas-Solid Flow in a Pneumatic-Flash Dryer, Drying Technol., 6-8 (1997) 1711-1720.
  • [80] M. SCIĄŻKO, Studium aerodynamiki cyrkulacyjnego reaktora fluidalnego w szczególności do pirolizy węgla, Zeszyty Naukowe Politechniki Śląskiej, Chemia Z. 143, Gliwice 2001.
  • [81] M. ŚCIĄŻKO, H. ZIELIŃSKI, Circulating fluid-bed reactor for coal pyrolysis, Chem. Eng. Technol., 18 (1995)343.
  • [82] W. NOWAK, A Comprehensive Study of the Circulating Fluidized Bed, Wydawnictwo Politechniki Częstochowskiej, Monografie nr 9, Częstochowa 1989.
  • [83] Z. BIS, Aerodynamika cyrkulacyjnej warstwy fluidalnej, Wydawnictwo Politechniki Częstochowskiej, Monografie nr 21, Częstochowa 1991.
  • [84] J.R. GRACE, Chem. Eng. Sci., 45 (1990) 1953.
  • [85] H.T BI, J.R. GRACE, Flow regime diagrams for gas-solids fluidization and upward transport, Int. J. Multiphase Flow, 21 (1995) 1229-1236,
  • [86] N. FROESSLING, Ueber die Verdunstung fallender Tropfen, Gertlands Beitraege Geophysik, 52. 1/2 (1938) 170-216.
  • [87] W.E. RANZ, Friction and transfer coefficients for single particles and packed beds, Chem. Eng. Progr., 48, 5 (1952) 247-253,
  • [88] W.E. RANZ, W.R. MARSHALL, Evaporation from drops, Chem. Eng. Progr., 48, 3 (1952) 141-146: 4, 173-180.
  • [89] H. BRAUER, Stoffaustausch, Verlag Sauerlaender Aarau, Schweiz, 1971, 355-404.
  • [90] S.A. BERG, Local Mass Transfer Rates from Spheroids, Waerme- und Stoffuebertragung, 9 (1976) 55-60.
  • [91] W.R. PATERSON, A.N. HAYHURST, Mass or heat transfer from a sphere to a flowing fluid. Chem. Eng. Sci., 55 (2000) 1925-1927,
  • [92] R. KRISHNA, Mass and Heat Transfer to Spheres, cylinder and Planar Surfaces: A Unified "Film " Model Description, Int. J. Heat and Mass Transfer, 48 (2005) 3402-3410,
  • [93] W.J. BEEK, Fluidization, eds: J.F. Davidson, D. Harrison, Academic Press, London, 1971, rozdz, 9.
  • Rozdział 4
  • [1] BECHER R.D., SCHLÜNDER E.U. Fluidized bed granulation: gas flow, particle motion and moisture distribution, Chemical Engineering and Processing 36 (1997), 261-269.
  • [2] BI H.T., A Discussion on Minimum Spout Velocity and Jet Penetration Length, The Canadian Journal of Chemical Engineering, Volume 82, February 2004, 4-10.
  • [3] BI H.T., MACCHI A., CHAOUKI J., LEGROS R., Minimum Spouting Velocity of Conical Spouted Beds, The Canadian Journal of Chemical Engineering, Vol. 75, April 1997, 460-465.
  • [4] CHOI M., MEISEN A., Hydrodynamics of Shallow, Conical Spouted Beds, The Canadian Journal of Chemical Engineering, Vol. 70, October 1992, 916-924.
  • [5] COSTA E. F., CARDOSO M., PASSOS M L., Simulation of drying suspensions in spout-fluid beds of inert particles, Drying Technology 19 (2001), 1975-2001.
  • [6] DEVAHASTIN S., MUJUMDAR A. S., RAGHAVAN G.S.V., Hydrodynamic characteristics of a rotating jet annular spouted bed, Powder Technology 103 (1999), 169-174.
  • [7] DEVAHASTIN S., MUJUMDAR A. S., Some hydrodynamic and mixing characteristics of a pulsed spouted bed dryer, Powder Technology 117 (2001), 189-197.
  • [8] ENGLART S., Badania hydrodynamiki przepływu powietrza w urządzeniu klimatyzacyjnym z fontannowym złożem fluidalnym, Raporty Katedry Klimatyzacji i Ciepłownictwa Politechniki Wrocławskiej, Seria SPR nr 6/2004, praca niepublikowana.
  • [9] ENGLART S., Hydrodynamika i wymiana ciepła w komorze zraszania z fontannowym złożem fluidalnym, Seria DN K01/06/P-OO3, 2006, praca doktorska niepublikowana, [10] HEINRICH S., BLUMSCHEIN J., HENNEBERG M., IHLOW M., PEGLOW M., MORL L., Study of dynamic multi-dimensional temperature and concentration distributions in liquid-sprayed fluidized beds, Chemical Engineering Science 58 (2003), 5135-5160, [11] HEINRICH S., MÖRL L., Description of the Temperature, Humidity, and Concentration Distribution in Gas-Liquid-Solid Fluidized Beds, Chemical Engineering Technology 22 (1999) 2, 118-122.
  • [12] HEINRICH S., MÖRL L., Fluidized bed spray granulation – A new model for the description of particle wetting and of temperature and concentration distribution, Chemical Engineering and Processing 38 (1999), 635-663.
  • [13] IHLOW M., HEINRICH S., HENNEGERG M., PEGLOW M., MÖRL L., The Problems Encountered when Calculating the Surface in Fluidized Beds Sprayed with Liquid, Chemical Engineering Technology 24 (2001) 9, 897-903.
  • [14] ISHIKURA T., NAGASHIMA H., IDE M., Hydrodynamics of a spouted bed with a porous draft tube containing a small amount of finer particles, Powder Technology 131 (2003), 56-65.
  • [15] KARLSSON S., NIKLASSON BJÖRN I., FOLESTAD S., RASMUSON A., Measurement of the particle movement in the fountain region of a Wurster type bed, Powder Technology 165 (2006), 22-29.
  • [16] KMIEĆ A., Ekspansja złoża oraz wymiana ciepła i masy w układach fluidalnych, Prace Naukowe Instytutu Inżynierii Chemicznej i Urządzeń Cieplnych Politechniki Wrocławskiej nr 36, Monografie nr 19, Wydawnictwo Politechniki Wrocławskiej, Wrocław 1980.
  • [17] KMIEĆ A., Expansion of solid-gas spouted beds, The Chemical Engineering Journal, 13 (1977), 143-147.
  • [18] KMIEĆ A., Expansion of Solid-Liquid Spouted Beds, The Chemical Engineering Journal, 10 (1975), 219-223.
  • [19] KMIEĆ A., Hydrodynamics of Flows and Heat Transfer in Spouted Beds, The Chemical Engineering Journal, 19 (1980), 189-200.
  • [20] KMIEĆ A., KUCHARSKI J., Heat and Mass Transfer During Coating of Tablets in a Spouted Bed, Inżynieria Chemiczna i Procesowa, Vol, 1, (1993), 47-58.
  • [21] KMIEĆ A., Równoczesna wymiana ciepła i masy w układach fluidalnych fontannowych, Inżynieria Chemiczny VI, 3.(1976), 497-516.
  • [22] KMIEĆ A., Simultaneous Heat and Mass Transfer in Spouted Beds, The Canadian Journal of Chemical Engineering, Vol. 53, February 1975, 18-24.
  • [23] KMIEĆ A., The Minimum Spouting Velocity in Conical Beds, The Canadian Journal of Chemical Engineering, Vol. 61, June 1983, 274-280.
  • [24] KUCHARSKI J., KMIEĆ A., Hydrodynamics, Heat and Mass Transfer During Coating of Tablets in a Spouted Bed, The Canadian Journal of Chemical Engineering, Vol. 61, June 1983, 435-439.
  • [25] KUWAGI K., TAKANO K., HORIO M., The effect of tangential lubrication by bridge liquid on the behavior of agglomerating fluidized beds, Powder Technology 113 (2000), 287-298.
  • [26] LYASHUK A., BERENGARTEN M. G., Hydrodynamic characteristics of an absorber with a movable packing, Chemical and Petroleum Engineering, Vol. 37, No, 3-4, 2001, 125-133.
  • [27] MARKOWSKI A. S., KAMIŃSKI W., Hydrodynamic Characteristics of Jet-Spouted Beds, The Canadian Journal of Chemical Engineering, Vol. 61, June 1983, 377-381.
  • [28] MCDOUGALL S., SABERIAN M., BRIENS C., BERRUTI F., CHAN E., Effect of liquid properties on the agglomerating tendency of a wet gas-solid fluidized bed, Powder Technology 149 (2005), 61-67.
  • [29] MCMILLAN J., ZHOU D., ARIYAPADI S., BRIENS C., BERRUTI F., Characterization of the Contact between Spray Droplets and Particles in a Fluidized Bed, Industrial & Engineering Chemistry Research, Web Release Date: February 8, 2005.06.22.
  • [30] NAGAHASHI Y., LEE D. H., GRACE J. R., EPSTEIN N., YOKOGAWA A., ASAKO Y., Enhancement of Large-Particle Gas-Fluidization by Adding Liquid, AIChE Journal, March 2003, Vol. 49, No, 3, 675-681.
  • [31] OCHOA MARTINEZ L.A., BRENNAN J. G., NIRANJAN K., Drying of Liquids in a Spouted Bed of Inert Particles: Heat Transfer Studies, Journal of Food Engineering 20 (1993), 135-148.
  • [32] OLAZAR M., AGUADO R., SAN JOSÉ M. J., ALVAREZ S., BILBAO J., Minimum spouting velocity for the pyrolysis of scrap tyres with sand in conical spouted beds, Powder Technology 165 (2006), 128-132.
  • [33] OLAZAR M., SAN JOSÉ M. J., AGUAYO A. T., ARANDES J. M., BILBAO J., Pressure drop in conical spouted beds, The Chemical Engineering Journal 51 (1993), 53-60.
  • [34] OLAZAR M., SAN JOSÉ M. J., AGUAYO A. T., ARANDES J. M., BILBAO J., Stable Operation Conditions for Gas-Solid Contact Regimes in Conical Spouted Beds, Ind. Eng. Chem. Res., 1992, 31, 1784-1792.
  • [35] OLAZAR M., SAN JOSÉ M.J., ALVAREZ S., MORALES A., BILBAO J., Design of Conical Spouted Beds for the Handling of Low-Density Solids, Ind. Eng. Chem. Res., 2004, 43, 655-661.
  • [36] PASSOS M.L., MUJUMDAR A.S., Effect of cohesive forces on fluidized and spouted beds of wet particles, Powder Technology, 110 (2000), 222-238.
  • [37] PLESNIARSKA A., Wymiana masy w procesie nawilżania powietrza w fontannowym złożu fluidalnym, Seria DN K01/06/P-002, 2006, praca doktorska niepublikowana.
  • [38] PUBLIO M. C. P., OLVEIRA W. P., Effect of the Equipment Configuration and Operating Conditions on Process Performance and on Physical Characteristics of the Product During Coating in Spouted Bed, The Canadian Journal of Chemical Engineering, Vol. 82, February 2004, 122-133.
  • [39] RENSTRÖM R., BERGHEL J., Drying of Sawdust in an Atmospheric Pressure Spouted Bed Steam Dryer, Drying Technology, 20 (2002), 449-464.
  • [40] ROCHA S.C.S., TARANTO O.P., AYUB G.E., Aerodynamics and Heat Transfer During Coating of Tablets in Two-Dimensional Spouted Bed, The Canadian Journal of Chemical Engineering, Volume 73, June 1995, 308-312.
  • [41] SAN JOSÉ M.J., OLAZAR M., AGUADO R., BILBAO J , Influence of the conical section geometry on the hydrodynamics of shallow spouted beds, The Chemical Engineering Journal 62 (1996), 113-120.
  • [42] SAN JOSÉ M.J., OLAZAR M., AGUAYO A.T., ARANDES J.M., BILBAO J., Expansion of spouted beds in conical contactors, The Chemical Engineering Journal 51 ( 1993), 45-52.
  • [43] SCHNEIDER T., BRIDGWATER J., The Stability of Wet Spouted Beds, Drying Technology, 11(2) (1993), 277-301.
  • [44] SPITZNER NETO P.I., CUNHA F.O., FREIRE J.T., Effect of the presence of paste in a conical spouted bed dryer with continuous feeding, Drying Technology 20 (2002), 789-811.
  • [45] SPITZNER NETO P.I., CUNHA F.O., FREIRE J.T., The influence of paste feed on the minimum spouting velocity, Brazilian Journal of Chemical Engineering, Vol. 18, No, 3 Sào Paulo set, 2001, tekst zaczerpnięty z: http://www.scielo.br
  • [46] STRUMIŁŁO W., Podstawy teorii techniki suszenia, Wydawnictwa Naukowo-Techniczne, Warszawa 1975.
  • [47] STRUMIŁŁO W., Podstawy teorii techniki suszenia, Wydawnictwa Naukowo-Techniczne, Warszawa 1983.
  • [48] ULRICH M., Feststofftransport in Gas-Feststoff-Diffusor-Kaskaden, Technische Universität „Otto von Guericke“ Magdeburg, 1992.
  • [49] VIEIRA M.G.A., ROCHA S.C.S., Influence of the liquid saturation degree on the fluid dynamics of a spouted-bed coaler, Chemical Engineering and Processing 43 (2004), 1275-1280.
  • [50] WANG Z., BI H.T., LIM C.J., SU P., Determination of Minimum Spouting Velocities in Conical Spouted Beds, The Canadian Journal of Chemical Engineering, Vol. 82, February 2004, 11-19.
  • [51] WEBER S., BRIENS C, BERRUTI F., CHAN E., GRAY M., Agglomerate stability in fluidized beds of glass beads and silica sand, Powder Technology 165 (2006), 115-127.
  • [52] ZHOU J., BRUNS D.D., FINNEY C.E.A., DAW C.S., PANNALA S., Correlations with Experimental Results from Cold Mockup Spouted Beds for Advanced Fuel Particle Coating, AIChE Annual Meeting, 2005
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0002-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.