PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parametric methods for time-frequency analysis of electric signals

Autorzy
Identyfikatory
Warianty tytułu
PL
Parametryczne metody analizy czasowo-częstotliwościowej sygnałów elektrycznych
Języki publikacji
EN
Abstrakty
EN
The author presents a new approach to spectral analysis of electric signals and related problems encountered in power systems. This approach includes the use of high-resolution subspace spectrum estimation methods (such as MUSIC and ESPRIT) as replacement of widely used Fourier Transform-based techniques. The author proves that such an approach can offer substantial advantages in parameter estimation accuracy, classification accuracy and many other aspects of power system analysis, especially when analyzing non-stationary waveforms. The problems treated in this work include theoretical analysis of the limitations of FFT-based analysis, problems in applications of Short Time Fourier Transform, description and characteristic properties of sub-space frequency estimation methods - MUSIC and ESPRIT; estimation of the model order, theoretical development of time-varying spectrum, application of filter banks and advantages when applying to line spectra analysis, space-phasor for analysis of three-phase signals, power quality assessment using indices with practical application to waveforms from an arc furnace power supply, numerical analysis of performance of investigated methods and a novel approach to classification of power system events based on time-frequency representation and selection of "areas of interest" in time-frequency plane. The author concludes that the use of high-resolution methods significantly improves the accuracy of many parameter estimation techniques applied to power system analysis.
PL
Praca niniejsza jest kontynuacją i rozwinięciem cyklu publikacji autora , mającą na celu ich usystematyzowanie i uzupełnienie. Autor proponuje nową metodologie analizy widmowej sygnałów elektrycznych (w tym trójfazowych) i wiele metod pochodnych przy pomocy metod podprzestrzeni (metod o wysokiej rozdzielczości, parametrycznych metod estymacji widma, takich jak MUSIC i ESPRIT), a także poddaje analizie właściwości różnych metod analizy widmowej, zastosowanych w praktyce. W pracy przestawiono kilka nowych koncepcji, które wzajemnie się uzupełniając, tworzą ramy nowego podejścia do analizy widmowej sygnałów elektrycznych. Koncepcje te obejmują zagadnienie wykorzystania większej dokładności metod parametrycznych w porównaniu do klasycznych metod wykorzystujących transformatę Fouriera, koncepcje analizy i identyfikacji na podstawie wybranych obszarów reprezentacji czasowo-częstotliwościowej sygnału, wykorzystania wektora przestrzennego do transformacji sygnałów trójfazowych, wykorzystania filtrów pasmowych (banki filtrów) do poprawy dokładności wyznaczania parametrów. Praca obejmuje szczegółową analizę teoretyczną prezentowanych zagadnień, która jest jednak ściśle podporządkowana praktycznym aspektom zastosowania metod parametrycznych do analizy sygnałów elektrycznych. Przedstawiono także wyniki badań symulacyjnych obejmujących porównanie dokładności metod parametrycznych, wyznaczania rzędu modelu, wskaźników jakości energii i klasyfikacji zakłóceń.
Twórcy
autor
  • Instytut Podstaw Elektrotechniki i Elektrotechnologii Politechniki Wroclawskiej, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław.
Bibliografia
  • [1] Altmann J., Surfing the Wavelets, Monash University, http://www.wavelet.org/tutorial/, 1996, online.
  • [2] Beckmann C.F., Smith S.M., Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging, FMRIB Technical Report TR02CB1, Department of Clinical Neurology, University of Oxford, Oxford, UK, 2003.
  • [3] Bozdogan H., Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions, Psychometrika, Vol. 51, 1987, pp. 345–370.
  • [4] Bracale A., Carpinelli G., Lauria D., Leonowicz Z., Łobos T., Rezmer J., On some spectrum estimation methods for analysis of non-stationary signals in power systems. Part 1. Theoretical aspects, 11th International Conference on Harmonics and Quality of Power, ICHQP, Lake Placid, New York, Sept. 12–15, 2004, CD–ROM.
  • [5] Bracale A., Carpinelli G., Lauria D., Leonowicz Z., Łobos T., Rezmer J., On some spectrum estimation methods for analysis of non-stationary signals in power systems. Part 2. Numerical applications, 11th InternationalConference on Harmonics and Quality of Power, ICHQP, Lake Placid, New York, Sept. 12–15, 2004, CD–ROM.
  • [6] Bracale A., Carpinelli G., Lauria D., Leonowicz Z., Łobos T., Rezmer J., Spectrum estimation of non-stationary signals in traction systems, Proceedings of the International Conference on Power Systems, (ICPS 2004), Kathmandu, Nepal, Nov. 3–5, 2004, Vol. 1, pp. 821–826.
  • [7] Bracale A., Carpinelli G., Leonowicz Z., Łobos T., Rezmer J., Evaluation of Compensation Devices ofDC Arc Furnaces using Advanced Spectrum EstimationMethods, Power System Computation Conference, Liège, Belgium (PSCC 2005), CD–ROM.
  • [8] Bracale A., Carpinelli G., Leonowicz Z., Łobos T., Rezmer J., Waveform Distortions due to AC/DC Converters Feeding DC Arc Furnaces, 8th International Conference "Electrical Power Quality and Utilisation" (EPQU’2005), Kraków, 2005.
  • [9] Bracale A., Carpinelli G., Leonowicz Z., Łobos T., Rezmer J., Measurement of IEC groups and subgroups using advanced spectrum estimation methods, Proceedings of the 23rd IEEE Instrumentation and Measurement Technology Conference (IMTC/06), Sorrento, Italy, 24-27 April 2006, pp. 1015–1020.
  • [10] Cichocki A., Shishkin S., Musha T., Leonowicz Z., Asada T., Kurachi T., EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease, Clin. Neurophysiology, Vol. 116, No. 3, 2005, pp. 729–737.
  • [11] Claasen T.A.C.M., Mecklenbrauker W.F.G., The Wigner distribution – A tool for time-frequency signal analysis – Part II: Discrete-time signals, Philips J. Res., Vol. 35, Oct. 1980, pp. 276–300.
  • [12] Canadian-American User Group, EMTP-ATP Rule Book, 1987–1992.
  • [13] Cohen L., Time-Frequency Analysis, Englewood Cliffs, NJ, Prentice–Hall, 1995.
  • [14] Dickie J.R., Nandi A.K., A comparative study of AR order selection methods, Signal Processing, Vol. 40, 1996, pp. 239–255.
  • [15] Flandrin P., Time-Frequency/Time-Scale Analysis, San Diego, Academic Press, 1998.
  • [16] Flores R., Signal Processing Tools for Power Quality Event Classification, Technical Report No. 477L, Department of Signals and Systems, Department of Electric Power Engineering, Chalmers University of Technology, Göteborg, Sweden, 2003.
  • [17] Golub G.H., Van Loan C.F., Matrix Computations, London, The Johns Hopkins University Press, Third edition, 1996.
  • [18] Gröchenig K., Foundations of Time-Frequency Analysis, Boston, Birkhäuser, 2001.
  • [19] Hari K.V.S., Ramakrishnan B.V., Performance analysis of modified spatial smoothing technique for direction estimation, Signal Processing, No. 79, 1999, pp. 73–85.
  • [20] Iaramillo S.H., Heydt G.T., Neill Carrello E.O., Power Quality Indices for Aperiodic Voltages and Currents, IEEE Trans. on Power Delivery, Vol. 15, April 2000, pp. 784–790. [21] IEC, General Guide on Harmonics and Interharmonics Measurements, for Power Supply Systems and Equipment Connected Thereto, IEC Std. 61000-4-7.
  • [22] IEC, Power Quality Measurement Methods, Testing and Measurement Techniques, IEC Std. 61000-4-30.
  • [23] Janik P., Leonowicz Z., Schegner P., Analyse nicht stationärer Signale in Energiesystemen, Elektrie, No. 9/12, 2002, pp. 321–328.
  • [24] Kandil M.S., Farghal S.A., Elmitwally A., Refined Power Quality Indices, IEE Proc. Gener., Trans. Distr., Vol. 148, Nov. 2001, pp. 590–596. [25] Kangas A., Stoica P., Söderström T., Finite sample and modelling error effect on ESPRIT and MUSIC direction estimators, IEE Proceedings on Radar, Sonar and Navigation, Vol. 141, No. 5, 1994, pp. 249–255.
  • [26] Kangas A., Stoica P., Söderström T., Large-Sample Analysis of MUSIC and Min-Norm Direction Estimators in the Presence of Model Errors, IEEE Trans. on Circuits, Systems, and Signal Processing, Vol. 15, 1996, pp. 377–393.
  • [27] Kil D.H., Shin F.B., Pattern Recognition and Prediction with Applications to Signal Characterization, Woodbury, N.Y., AIP Press, 1996.
  • [28] Kay S.M., Modern Spectral Estimation, Englewood Cliffs, NJ, Prentice–Hall, 1988.
  • [29] Koglin H.-J., Leonowicz Z., Łobos T., Identification of out-of-step operation of synchronous machines using high resolution spectrum estimation methods, Modern Electric Power Systems (MEPS ’02),Wrocław, Sept. 11–13, 2002, pp. 378–383.
  • [30] Kovacs K.P., Symmetrische Komponenten in Wechselstrommaschinen, Birkhäuser Verlag, 1962.
  • [31] Kusuma J., Parametric Frequency Estimation: ESPRIT and MUSIC, Rice University, http://cnx.rice.edu/content/m10588/, 2002. 105
  • [32] Leonowicz Z., Analysis of non-stationary signals in power systems, International Journal for Computation and Mathematics in Electronic Engineering COMPEL (Great Britain), Vol. 23, No. 2, 2004, pp. 381–391. [33] Leonowicz Z., Performance of parametric spectrum estimation methods, XXIX Mi˛edzynarodowa Konferencja z Podstaw Elektrotechniki i Teorii Obwodów (IC–SPETO 2006), Gliwice-Ustro´n, 24-27.05.2006, Vol. 2, pp. 227–230.
  • [34] Leonowicz Z., Karvanen J, Tanaka T., Rezmer J., Model order selection criteria: comparative study and applications, Computational problems of electrical engineering. Proceedings of the V Ith InternationalWorkshop, Zakopane, Sept. 1–4, 2004, pp. 193–196.
  • [35] Leonowicz Z., Karvanen J., Tanaka T., Rezmer J., Model order selection criteria: comparative study and applications, Prz. Elektrotech., R. 81, No. 2, 2005, pp. 47–50.
  • [36] Leonowicz Z., Karvanen J., Shishkin S., Trimmed estimators for robust averaging of event–related potentials, J. Neurosci. Methods, Vol. 142, No. 1, 2005, pp. 17–26.
  • [37] Leonowicz Z., Łobos T., Advanced spectral analysis of out-of-step operation of synchronous machines, IFAC Symposium on Power Plants and Power Systems Control 2003, Seoul, Korea, Sept. 15–19, 2003, CD–ROM.
  • [38] Leonowicz Z., Łobos T., Analysis of Traction System Time-Varying Signals using ESPRIT Subspace Spectrum Estimation Method, 32nd Annual Conference of the IEEE Industrial Electronics Society, IECON 2006, accepted.
  • [39] Leonowicz Z., Łobos T., Application of time-frequency distribution and neural networks for fault classification in power electronics, IEEE International Symposium on Computational Intelligence for Measurement Systems and Applications (CIMSA ’03), Lugano, Switzerland, July 29–31, 2003, pp. 67–71.
  • [40] Leonowicz Z., Łobos T., Automatic fault classification in power electronics using time-frequency distribution and neural networks, 12th Intelligent Systems Applications to Power Systems Conference (ISAP 2003), Lemnos, Greece, 31 August–3 September, 2003, CD–ROM.
  • [41] Leonowicz Z., Łobos T., Modern spectral analysis of non-stationary signals in power electronics, 5th Workshop on Electronics, Control, Modelling, Measurement and Signals, Université Paul Sabatier, Toulouse, May 30–31, June 1, 2001, pp. 115–119.
  • [42] Leonowicz Z., Łobos T., Power Quality Evaluation using Advanced Spectrum Estimation Methods, 2006 International Conference on Power System Technology "Opportunities and Challenges under Rapid Power Growth", accepted.
  • [43] Leonowicz Z., Łobos T., Time-frequency analysis of non-stationary three phase signals, 15th Triennal World Congress of the International Federation of Automatic Control, Barcelona (IFAC 2002), 21–26 July 2002, CD–ROM.
  • [44] Leonowicz Z., Łobos T., Rezmer J., Advanced spectrum estimation methods for signal analysis in power electronics, IEEE Trans. Industr. Electron., Vol. 50 , No. 3, 2003, pp. 514–519.
  • [45] Leonowicz Z., Łobos T., Rezmer J., Spectrum estimation of non-stationary signals in power systems, Proceedings of the 5th International Conference on Power Systems Transients (IPST 2003), New Orleans, Luisiana, USA, Sept 28–Oct 2, 2003, CD–ROM. 106
  • [46] Leonowicz Z., Łobos T., Rezmer J., Spectrum estimation of non-stationary electrical signals, XXVI Mi˛edzynarodowa Konferencja z Podstaw Elektrotechniki i Teorii Obwodów (IC–SPETO 2003), Gliwice–Niedzica, May 28–31, 2003, Vol. 2, pp. 411–414.
  • [47] Leonowicz Z., Łobos T., Rezmer J., Spectrum estimation methods for signal analysis in the supply system of DC arc furnace, Proceedings of the XIII International Symposium on Theoretical Electrical Engineering (ISTET ’05), Lviv, July 4–7, 2005, pp. 161–164.
  • [48] Leonowicz Z., Łobos T., Ruczewski P., Szyma´nda J., Analysis of distorted signals using HOS, International Journal for Computation and Mathematics in Electronic Engineering COMPEL (Great Britain), Vol. 17, Issue 5/6, 1998, pp. 602–611.
  • [49] Leonowicz Z., Łobos T., Schegner P., Modern spectral analysis of non-stationary signals in electrical power systems, 14th Power System Computation Conference (PSCC 2002), Sevilla, Spain, June 24–28, 2002, CD–ROM.
  • [50] Leonowicz Z., Łobos T., Schegner P., Time-frequency distribution for automatic fault classification in power electronics, Proceedings of the 13th International Conference on Power System Protection (PSP 2002), Bled, Slovenia, Sept. 25–27, 2002, pp. 93–97.
  • [51] Leonowicz Z., Łobos T., Sikorski T., Time-frequency analysis of three phase signals using Wigner distribution, IVth International Workshop: Computational Problems of Electrical Engineering, Zakopane, Sept. 2–5, 2002, pp. 81–84.
  • [52] Leonowicz Z., Łobos T., Wacławek Z., Schegner P., Time-frequency distribution for fault classification in electrical engineering, XXV Mi˛edzynarodowa Konferencja z Podstaw Elektrotechniki i Teorii Obwodów (IC– SPETO 2002), Gliwice–Ustro´nMay, 22–25, 2002, Vol. 2, pp. 521–524.
  • [53] Leonowicz Z., Łobos T.,Wo´zniak K., Zastosowanie transformaty S do analizy sygnałów niestacjonarnych w elektrotechnice, XXVIII Mi˛edzynarodowa Konferencja z Podstaw Elektrotechniki i Teorii Obwodów (IC–SPETO 2005), Gliwice–Ustro´n,May 11–14, 2005, Vol. 2, pp. 379–382.
  • [54] Łobos T., Fast estimation of symmetrical components in real time, IEE Proceedings–C, Vol. 139, No. 1, 1992, pp. 27–30. [55] Łobos T., Leonowicz Z., Badania stanów awaryjnych układów przekształtnikowych z zastosowaniem statystyk wy˙zszych rz˛edów, Jako´s´c i U˙zytkowanie Energii Elektrycznej, Vol. V, Iss. 1, 1999, pp. 37–42.
  • [56] Łobos T., Leonowicz Z., Hochauflösende Signalverarbeitungsmethoden in der elektrischen Energietechnik, Elektrie, 2002, No. 9/12, pp. 315–320. [57] Łobos T., Leonowicz Z., Rezmer J., Advanced spectrum estimation methods for signal analysis in power electronics, The 2001 IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED 2001), Grado, Italy, Sept. 1–3, 2001, pp. 333–337.
  • [58] Łobos T., Leonowicz Z., Rezmer J., Harmonics and interharmonics estimation using advanced signal processing methods, IEEE Ninth International Conference on Harmonics and Quality of Power, Orlando, Florida, Oct. 1–4, 2000, Vol. 1, pp. 335–340.
  • [59] Łobos T., Leonowicz Z., Rezmer J., Koglin H.-J., Advanced signal processing methods 107 of harmonics and interharmonics estimation, IEE Seventh International Conference on Developments in Power System Protection, Amsterdam, 9–12 April, 2001, pp. 315–318.
  • [60] Łobos T., Leonowicz Z., Rezmer J., Koglin H.-J., Advanced spectrum estimation methods for signal analysis in electrical engineering, XI International Symposium on Theoretical Electrical Engineering (ISTET ’01), Johannes Kepler University Linz, Linz, Austria, August 19–22, 2001, CD–ROM.
  • [61] Łobos T., Leonowicz Z., Rezmer J., Schegner P., High resolution spectrum estimation methods for signal analysis in power systems. , IEEE Trans. Instrum. Meas., 2006, Vol. 55, No 1, pp. 219–225.
  • [62] Łobos T., Sikorski T., Leonowicz Z., Time-frequency analysis of complex space-phasor in power electronics, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IMTC/04), Como, Italy, 18–20 May, 2004, Vol. 3, pp. 2115–2119.
  • [63] Mallat S., Papanicolaou G., Zhang Z., Adaptive covariance estimation of locally stationary processes, Annals of Statistics, Vol. 26, 1998, pp.1–47. [64] Martin W., Flandrin P., Wigner–Ville Spectral Analysis of Nonstationary Processes, IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. Assp. 33, No. 4, Dec. 1985, pp. 1461–1470.
  • [65] Mikołajuk K., Podstawy analizy obwodów energoelektronicznych, Warszawa, Wydawnictwo Naukowe PWN, 1998. [66] Minka T., Automatic Choice of Dimensionality for PCA, Advances in Neural Information Processing Systems (NIPS), MIT Press, Vol. 13, 2000.
  • [67] Naidu P.S., Modern Spectrum Analysis of Time Series, Boca Raton, Florida, CRC Press, 1996.
  • [68] Pisarenko V.F., The retrieval of harmonics from a covariance function, Geophysics J. Roy. Astron. Soc., Vol. 33, 1973, pp. 347–366.
  • [69] Quian S., Chen D., Joint Time-Frequency Analysis; Methods and Applications, Upper Saddle River, NJ, Prentice–Hall PTR, 1996, pp. 45–199.
  • [70] Rao B.D., Hari K.V.S., Performance Analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise, IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 37, No. 12, 1989, pp. 1990–1995.
  • [71] Rao B.D., Hari K.V.S., Performance Analysis of Root-Music, IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 37, No. 12, 1989, pp. 1939–1949.
  • [72] Rice J.R., Mathematical Statistics and Data Analysis, Belmont, Duxbury Press, 1995.
  • [73] Rissanen J., Speed T., Yu B., Density estimation by stochastic complexity, IEEE Trans. on Information Theory, 1992, pp. 315–323.
  • [74] Roy R., Kailath T., ESPRIT – Estimation of Signal Parameters via Rotational Invariance Techniques, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP–37, 1989, pp. 984–995.
  • [75] Ruhm D., Visualisierung einer stromrichtergespeisten Asynchronmaschine, PhD dissertation, Rozprawa doktorska, PolitechnikaWrocławska,Wydział Elektryczny,Wrocław, promotor Tadeusz Łobos, 2001. 108
  • [76] Schmidt R.O., Multiple emitter location and signal parameter estimation, Proc. RADC Spectrum EstimationWorkshop, Griffiss AFB, NY, 1979, pp. 243–258.
  • [77] Schwarz G., Estimating the dimension of a model, Annals of Statistics, Vol. 6, 1978, pp. 461–464.
  • [78] Sedjiˇc E., Jiang J., Comparative study of three time-frequency representations with applications to a novel correlation method, Proc. of IEEE International Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Montreal, May 17–21, 2004, Vol. 2, pp. 633–636.
  • [79] Serrano-Iribarnegaray L., The modern space-phasor theory, Part I, 1st coherent formulation and its advantages for transient analysis of converter-fed AC machines, ETEP, Vol. 3, No. 2, March/April 1993, pp. 171–180.
  • [80] Shan P., Beex A.A., High-resolution instantaneous frequency estimation based on time-varying AR modeling, Proceedings of the IEEE–SP Int. Symposium on Time-Frequency and Time-Scale Analysis, Pittsburgh, USA, Oct. 6–9, 1998, pp. 109–112.
  • [81] Stoica P., Moses R., Introduction to Spectral Analysis, Upper Saddle River, New Jersey, Prentice–Hall PTR, 1997.
  • [82] Stoica P., Nehorai A., Music, maximum-likelihood and the Cramer–Rao bound, IEEE Trans. on Signal Processing, No. 37, 1989, pp. 720–741.
  • [83] Stoica P., Nehorai A., Performance comparison of subspace rotation and Music-like methods, IEEE Trans. Acoust. Speech, Signal Processing, No. 39, 1991, pp. 446–453.
  • [84] Swami A., Cumulant-Based Approach to the Harmonic Retrieval and Related Problems, IEEE Transactions on Signal Processing, Vol. 39 , Iss. 5, 1995, pp. 1099–1108.
  • [85] Therrien C.W., Discrete Random Signals and Statistical Signal Processing, Englewood Cliffs, New Jersey, Prentice Hall PTR, 1992.
  • [86] Tkacenko A., Vaidyanathan P.P., The role of filter banks in sinusoidal frequency estimation, Journal of the Franklin Institute, Vol. 338, No. 5, 2001, pp. 517–547.
  • [87] Vaidyanathan P.P., Multirate Systems and Filter Banks, Englewood Cliffs, NJ, Prentice–Hall, Inc., 1993.
  • [88] Vaidyanathan P.P., Orthonormal and biorthonormal filter banks as convolvers, and convolutional coding gain, IEEE Trans. Signal Processing,Vol. 41, No. 6, 1993, pp. 2110—2130.
  • [89] Velez E.F., Absher R.G., Spectral Estimation Based on the Wigner–Ville Representation, Signal Processing, vol. 20, No. 4, 1990, pp. 325–347.
  • [90] Wax M., Kailath T., Detection of Signals by Information Theoretic Criteria, IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP–33, No. 2, 1985, pp. 387–392.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW8-0001-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.