PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of a high performance Mach-Zehnder interferometer all optical switch

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a detailed performance analysis for a Mach-Zehnder interferometer (MZI) optical switch with a channel profile of titanium-indiffused lithium niobate (Ti:LiNbO3) is presented. The concept of diffusion process controlled modeling has been used to design and optimize its performance. Impacts of Ti-strip thickness on the power imbalance of first 3-dB coupler and crosstalk (CT) levels at the end of the interferometric arms are defined and calculated. Transition losses in the curved waveguides of the structure are maintained at low levels by selecting low less bend structures to increase overall performance of the switch. The best CT levels of - 41.73 dB for cross state and -32.69 dB for bar state at 1.3 mu m wavelength have been achieved. While at 1.55 mum wavelength, a CT of - 41.73 dB for cross state and -33.99 dB for bar state have been observed. The switch designed was found to operate best at 7.25 V and 8.25 V for test wavelengths of 1.3 mu m and 1.55 mu m, respectively. The computed results for its performance are better as compared to the present published data.
Czasopismo
Rocznik
Strony
613--625
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
autor
autor
  • Department of Electronics and Communication Engineering, Malaviya National Institute of Technology Jaipur-302017, India
Bibliografia
  • [1] PAPADIMITRIOU G.I., PAPAZOGLOU C., POMPORTSIS A.S., Optical Switching, Wiley Series in Microwave and Optical Engineering, Wiley, 2007.
  • [2] ZHENG C.-T., MA C.-S., YAN X., ZHANG D.-M., Design of a spectrum-expanded polymer MZI electro-optic switch using two-phase generating couplers, Applied Physics B: Lasers and Optics 102(4), 2011, pp. 831–840.
  • [3] WOL-YON HWANG, MIN-CHEOL OH, HYANG-MOK LEE, HEUK PARK, JANG-JOO KIM, Polymeric 2×2 electrooptic switch consisting of asymmetric Y junctions and Mach–Zehnder interferometer, IEEE Photonics Technology Letters 9(6), 1997, pp. 761–763.
  • [4] LI H.P., LIAO J.K., TANG X.G., LU R.G., LIU Y.Z., 2×2 polymeric electro-optic MZI switch using multimode interference couplers, Proceedings of SPIE 7509, 2009, article 75090X.
  • [5] XU XUE-JUN, CHEN SHAO-WU, XU HAI-HUA, SUN YANG, YU YU-DE, YU JIN-ZHONG, WANG QI-MING, High-speed 2×2 silicon-based electro-optic switch with nanosecond switch time, Chinese Physics B18(9), 2009, pp. 3900–3904
  • [6] YAHYA E.H.M, Mach–Zehnder Interferometer, M. Tech. Thesis, Faculty of Electrical Engineering, University of Technology Malaysia, April 2007.
  • [7] RAHMAN M.S.A., SHAKTUR K.M., MOHAMMAD R., Analytical and simulation of new electro-optic 3×3 switch using a Ti:LiNbO3 waveguide medium, 2010 International Conference on Photonics (ICP),2010, pp. 1–5.
  • [8] MAAT D.H.P., InP-Based Integrated MZI Switches for Optical Communication, PhD Thesis, Department of Applied Physics, Delft University of Technology, Delft, The Netherlands, 9 April, 2001.
  • [9] SHAOCHUN CAO, LIPING SUN, SAVOIE M., 2×2 MMI–MZI GaAs–GaAlAs carrier-injection optical switch, 2010 IEEE Photonics Society Summer Topical Meeting Series, 2010, pp. 207–208.
  • [10] HOUBAVLIS T., ZOIROS K.E., KANELLOS G., TSEKREKOS C., Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach–Zehnder interferometer, Optics Communications 232(1–6), 2004, pp. 179–199.
  • [11] MIN ZHANG, YONGPENG ZHAO, LING WANG, JIAN WANG, PEIDA YE, Design and analysis of all-optical XOR gate using SOA-based Mach–Zehnder interferometer, Optics Communications 223(4–6), 2003, pp. 301–308.
  • [12] CHEN H., ZHU G., WANG Q., JAQUES J., LEUTHOLD J., PICCIRILLI A.B., DUTTA N.K., All-optical logic XOR using differential scheme and Mach–Zehnder interferometer, Electronics Letters 38(21), 2002, pp. 1271–1273.
  • [13] DIMITRIADOU E., ZOIROS K.E., On the design of ultrafast all-optical NOT gate using quantum--dot semiconductor optical amplifier-based Mach–Zehnder interferometer, Optics and Laser Technology 44(3), 2012, pp. 600–607.
  • [14] CHATTOPADHYAY T., All-optical modified Fredkin gate, IEEE Journal of Selected Topics in Quantum Electronics 18(2), 2012, pp. 585–592.
  • [15] SUZUKI K., YAMADA T., MORIWAKI O., TAKAHASHI H., OKUNO M., Polarization-insensitive MZI switch composed of an LN phase shifter array and silica-based PLC-integrated polarization beam splitter, Conference on Optical Fiber communication/National Fiber Optic Engineers Conference, 2008,OFC/NFOEC 2008, pp. 1–3.
  • [16] HAN TAE YONG, HYUN-SHIK LEE, EL-HANG LEE, Design of compact silicon optical modulator using photonic crystal MZI structure, 2008 5th IEEE International Conference on Group IV Photonics, 2008, pp. 308–310.
  • [17] YAW-DONG WU, All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity, IEEE Journal of Selected Topics in Quantum Electronics 11(2), 2005,pp. 307–312.
  • [18] JOO-YOUP KIM, JEUNG-MO KANG, TAE-YOUNG KIM, SANG-KOOK HAN, All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: Theory and experiment, Journal of Lightwave Technology 24(9), 2006, pp. 3392–3399.
  • [19] YAW-DONG WU, TIEN-TSORNG SHIH, MAO-HSIUNG CHEN, New all-optical logic gates based on the local nonlinear Mach–Zehnder interferometer, Optics Express 16(1), 2008, pp. 248–257.
  • [20] SANCHIS P., CUESTA-SOTO F., BLASCO J., GARCÍA J., MARTÍNEZ A., MARTI J., RIBOLI F., PAVESI L., All-optical MZI XOR logic gate based on Si slot waveguides filled by Si-nc embedded in SiO2, 3rd IEEE International Conference on Group IV Photonics, 2006, pp. 81–83.
  • [21] BEAUMONT A.R., ATKINS C.G., BOOTH R.C., Optically induced drift effects in lithium niobate electro-optic waveguide devices operating at a wavelength of 1.51 μm, Electronics Letters 22(23),1986, pp. 1260–1261.
  • [22] OptiBPM, Technical Background and Tutorials. Waveguide Optics Modeling Software System, Version 8.0, Second Edition, Optiwave Inc., 2006.
  • [23] BARNES C.E., GREENWELL R.A., Radiation effects in photonic modulator structures, Proceedings of SPIE 2482, 1995, p. 48
  • [24] ANALUI B., GUCKENBERGER D., KUCHARSKI D., NARASIMHA A., A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13 μm CMOS SOI technology, IEEE Journal of Solid-State Circuits 41(12), 2006, pp. 2945–2955.
  • [25] NORD M., Optical Switching Technologies for Optical Line, Burst and Packet Switches, Scientific Report, Telenor Communication, 2002.
  • [26] WONG K.K., Properties of Lithium Niobate, EMIS Datareviews Series No. 28, An INSPEC Publication, 2002, p. 131.
  • [27] JIN H., BELANGER M., JAKUBCZYK Z., General analysis of electrodes in integrated-optics and electrooptic devices, IEEE Journal of Quantum Electronics 27(2), 1991, pp. 243–251.
  • [28] BENTINI G.G., BIANCONI M., CERUTTI A., CHIARINI M., PENNESTRI G., SADA C., ARGIOLAS N.,BAZZAN M., MAZZOLDI P., Integrated Mach–Zehnder micro-interferometer on LiNbO3, Optics and Lasers in Engineering 45(3), 2007, pp. 368–372.
  • [29] YARIV A., Optical Electronics in Modern Communications, 5th Edition, Oxford University Press,1996.
  • [30] SINGH G., BHATTACHARJEE T.P., MUNDRA R., YADAV R.P., JANYANI V., Design and analysis of the performance of MZI-based all-optical switch exploiting the band gap shifting character of SOA’s, Journal of Optics 38(1), 2009, pp. 29–37.
  • [31] CHATTOPADHYAY T., All-optical programmable Boolean logic unit using semiconductor optical amplifiers on the Mach–Zehnder interferometer arms switch, IET Optoelectronics 5(6), 2011, pp. 270–280.
  • [32] TEKIN T., Monolithically Integrated Gain Shifted Mach–Zehnder Interferometer for All-Optical Demultiplexing, PhD Thesis, Faculty of Electrical Engineering and Computer Science, Technical University of Berlin, Germany, 20th July, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0027-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.