Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper studies the perturbation theory of optical solitons with log law nonlinearity. The adiabatic dynamics of the Gausson parameters are determined in the presence of the perturbation terms. The fixed point is also found and finally the numerical simulation is carried out.
Czasopismo
Rocznik
Tom
Strony
447--454
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
autor
autor
autor
autor
- Department of Mathematical Sciences, Delaware State University, Dover, DE 19901-2277, USA
Bibliografia
- [1] BISWAS A., ACEVES A.B., Dynamics of solitons in optical fibers, Journal of Modern Optics 48(7),2001, pp. 1135–1150.
- [2] BISWAS A., MILOVIC D., Optical solitons with log law nonlinearity, Communications in Nonlinear Science and Numerical Simulation 15(12), 2010, pp. 3763–3767.
- [3] BISWAS A., CLEARY C., WATSON J.E., JR., MILOVIC D., Optical soliton perturbation with time--dependent coefficients in a log law media, Applied Mathematics and Computation 217(6), 2010,pp. 2891–2894.
- [4] BISWAS A., MILOVIC D., MAJID F., KOHL R., Optical soliton cooling in a saturable law media, Journal of Electromagnetic Waves and Applications 22(13), 2008, pp. 1735–1746.
- [5] BISWAS A., FESSAK M., JOHNSON S., BEATRICE S., MILOVIC D., JOVANOSKI Z., KOHL R., MAJID F., Optical soliton perturbation in non-Kerr law media: Traveling wave solution, Optics and Laser Technology 44(1), 2012, pp. 263–268.
- [6] BISWAS A., MILOVIC D., KOHL R., Optical soliton perturbation in a log-law medium with full nonlinearity by He’s semi-inverse variational principle, Inverse Problems in Science and Engineering 20(2), 2012, pp. 227–232.
- [7] BISWAS A., TOPKARA E., JOHNSON S., ZERRAD E., KONAR S., Quasi-stationary optical solitons in non-Kerr law media with full nonlinearity, Journal of Nonlinear Optical Physics and Materials 20(3), 2011, pp. 309–325.
- [8] GREEN P.D., MILOVIC D., LOTT D.A., BISWAS A., Optical solitons with higher order dispersion by semi-inverse variational principle, Progress in Electromagnetics Research 102, 2010, pp. 337–350.
- [9] CHAO HANG, GUOXIANG HUANG, Giant Kerr nonlinearity and weak-light superluminal optical solitons in a four-state atomic system with giant doublet, Optics Express 18(3), 2010, pp. 2952–2966.
- [10] JANA S., KONAR S., A new family of Thirring type optical solitons via electromagnetically induced transparency, Physics Letters A 362(5–6), 2007, pp. 435–438. 454 L. GIRGIS et al.
- [11] KHALIQUE C.M., BISWAS A., Gaussian soliton solution to nonlinear Schrödinger equation with log-law nonlinearity, International Journal of Physical Sciences 5(3), 2010, pp. 280–282.
- [12] KOHL R., BISWAS A., MILOVIC D., ZERRADE., Optical soliton perturbation in a non-Kerr law media, Optics and Laser Technology 40(4), 2008, pp. 647–662.
- [13] KONAR S., SHEKHAR S., WOO-PYO HONG, Incoherently coupled two component screening photovoltaic solitons in two-photon photorefractive materials under the action of external field, Optics and Laser Technology 42(8), 2010, pp. 1294–1300.
- [14] KONAR S., SHEKHAR S., SHWETANSHUMALA S., External electric field induced modulation instability of an electromagnetic beam in two-photon photorefractive materials, Optics and Laser Technology 42(8), 2010, pp. 1276–1281.
- [15] WEN-JUN LIU, BO TIAN, TAO XU, KUN SUN, YAN JIANG, Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control, Annals of Physics 325(8), 2010, pp. 1633–1643.
- [16] XING LÜ, HONG-WU ZHU, ZHEN-ZHI YAO, XIANG-HUA MENG, CHENG ZHANG, CHUN-YI ZHANG,BO TIAN, Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications, Annals of Physics 323(8), 2008, pp. 1947–1955.
- [17] MEDHEKAR S., SARKAR R.K., PALTANI P.P., Soliton pairing of two coaxially co-propagating mutually incoherent 1-D beams in Kerr type media, Optica Applicata 37(3), 2007, pp. 243–259.
- [18] JIAN-JUN SHU, Exact N-envelope-soliton solutions of the Hirota equation, Optica Applicata 33(2–3),2003, pp. 539–546.
- [19] SARMA A.K., Dark soliton switching in an NLDC in presence of higher-order perturbative effects, Optics and Laser Technology 41(3), 2009, pp. 247–250.
- [20] SARMA A.K., Solitary wave solutions of higher-order NLSE with Raman and self-steepening effect in a cubic-quitic–septic medium, Communications in Nonlinear Science and Numerical Simulation 14(8), 2009, pp. 3215–3219.
- [21] TRIKI H., TAHA T.R., The sub-ODE method and soliton solutions for a higher order dispersive cubic–quintic nonlinear Schrödinger equation, Chaos, Solitons and Fractals 42(2), 2009,pp. 1068–1072.
- [22] TRIKI H., WAZWAZ A.M., Soliton solution for an inhomogeneous highly dispersive media with a dual-power nonlinearity law, International Journal of Computer Mathematics 87(5), 2010, pp. 1178–1185.
- [23] ZAI-YUN ZHANG, ZHEN-HAI LIU, XIU-JIN MIAO, YUE-ZHONG CHEN, New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity, Applied Mathematics and Computation 216(10), 2010, pp. 3064–3072.
- [24] ZAI-YUN ZHANG, ZHEN-HAI LIU, XIU-JIN MIAO, YUE-ZHONG CHEN, Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity, Physics Letters A 375(10), 2011, pp. 1275–1280.
- [25] ZAI-YUN ZHANG, YUN-XIANG LI, ZHEN-HAI LIU, XIU-JIN MIAO, New exact solutions to the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity via modified trigonometric function series method, Communications in Nonlinear Science and Numerical Simulation 16(8), 2011, pp. 3097–3106.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0027-0001