PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element method simulation of interface evolution during epitaxial growth

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Epitaxial Lateral Overgrowth (ELO) is a method of epitaxial growth on a partially masked substrate. It can be a promising method for photovoltaic applications due to a possibility of producing thin and high quality silicon substrates. Since the mask prevents propagation of the substrate dislocations to the laterally overgrown parts of the ELO layer they are characterized by a lower dislocation density than the substrate. It means that it is possible to fabricate good quality solar cells on a poor quality Si substrate. The main goal of the research is to obtain a higher growth rate in the lateral direction than in the direction normal to the substrate. The epilayer growth kinetics depends on many technological factors, basically the growth temperature, the cooling rate, the solvent and the mask filling factor. For this reason the best way to achieve the goal is a computational analysis of the epitaxial layer growth process. This work presents a two-dimensional computational study of such a process of growth for different technological conditions. The computational model is based on the assumption of pure diffusion control growth.
Wydawca
Rocznik
Strony
414--418
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
autor
  • Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • [1] LIU Y.C., ZYTKIEWICZ Z.R., DOST S., J. Crystal Growth, 265 (2004), 241.
  • [2] NISHINAGA T., Crystal Properties Prep., 31 (1991), 92.
  • [3] KHENNER M., BRAUN R.J., MAUK M.G., J. Crystal Growth, 235 (2002), 425.
  • [4] KHENNER M., BRAUN R.J., MAUK M.G., J. Crystal Growth, 241 (2002), 330.
  • [5] ZYTKIEWICZ Z.R., J. Crystal Growth, 172 (1996), 259.
  • [6] ZYTKIEWICZ Z.R., Cryst. Res. Technol., 34 (1999), 573.
  • [7] DOST S., LENT B., Single Crystal Growth of Semiconductors from Metallic Solutions, Elsevier 2007.
  • [8] CAPPER P., MAUK M., LIQUID PHASE EPITAXY OF ELECTRONIC, OPTICAL AND OPTOELECTRONIC MATERIALS, John Willey & Sons, 2007.
  • [9] ZYTKIEWICZ Z.R., Thin Solid Films, 412 (2002), 64.
  • [10] KRAIEM J., FAVE A., KAMI´N SKI A., LEMITI M., JOZWIK I., OLCHOWIK J.M., Proc. 19th EPSEC, 7–11 June 2004, Paris, France, p. 1158.
  • [11] YAN Z., NISHINAGA S., NISHINAGA T., J. Crystal Growth, 209 (2000), 1.
  • [12] LIU Y.C., ZYTKIEWICZ Z.R, DOST S., J. Crystal Growth, 275 (2005), e953–e957.
  • [13] KIMURA M., DJILALI N., DOST S., KANAI H., TANAKA A., SUKEGAWA T., J. Crystal Growth, 167 (1996), 516.
  • [14] CHEN L.J., CHEN L.C., WAN C., LIEN C., The Chemical Engineering Journal and the Biochemical Engineering Journal, 62 (1996), 43.
  • [15] KIMURA M., DJILALI N., DOST S., J. Crystal Growth,143 (1994), 334.
  • [16] JOZWIK I., OLCHOWIK J.M., Proc. 21st EPSEC, 4–8 September 2006, Dresden, Germany, (CD) p. 1005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0025-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.