PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of composite load model parameters using improved particle swarm optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Power system loads are one of its crucial elements to be modeled in stability studies. However their static and dynamic characteristics are very often unknown and usually changing in time (daily, weekly, monthly and seasonal variations). Taking this into account, a measurement-based approach for determining the load characteristics seems to be the best practice, as it updates the parameters of a load model directly from the system measurements. To achieve this, a Parameter Estimation tool is required, so a common approach is to incorporate the standard Nonlinear Least Squares, or Genetic Algorithms, as a method providing more global capabilities. In this paper a new solution is proposed -an Improved Particle Swarm Optimization method. This method is an Artificial Intelligence type technique similar to Genetic Algorithms, but easier for implementation and also computationally more efficient. The paper provides results of several experiments proving that the proposed method can achieve higher accuracy and show better generalization capabilities than the Nonlinear Least Squares method. The computer simulations were carried out using a one-bus and an IEEE 39-bus test system.
Rocznik
Tom
Strony
41--51
Opis fizyczny
Bibliogr. 9 poz., rys. 6
Twórcy
autor
autor
  • School of Electrical and Electronic Engineering, The University of Manchester, UK,
Bibliografia
  • [1] CHOI B.-K., CHING H.-D., LI Y., CHEN Y.-T., HUANG D.-H., LAUBY M. G., Development of Composite Load Models of Power Systems using On-line Measurement Data, Power Engineering Society General Meeting, 2006. IEEE, 2006.Estimation of composite load model parameters using improved particle swarm optimization 51
  • [2] CHOI B.-K., CHIANG H.-D., LI Y., LI H., CHEN Y.-T., HUANG D., LAUBY M.G., Measurementbased dynamic load models: derivation, comparison, and validation, Power Systems, IEEE Transactions on, vol. 21, no. 3, pp. 1276–1283, Aug. 2006.
  • [3] CUTSEM T., VOURNAS C., Voltage Stability of Electrical Power System, Kluwer Academic Publishers, 1998.
  • [4] CUTSEM T., VOURNAS C., Voltage Stability of Electrical Power System, Kluwer Academic Publishers, 1998.
  • [5] GUANGYI C., WEI G., KAISHENG H., On Line Parameter Identification of an Induction Motor Using Improved Particle Swarm Optimization, Proceedings of the 26th Chinese Control Conference, 26-31 July 2007.
  • [6] KUNDUR P., Power System Stability and Control, McGraw-Hill, 1994.
  • [7] MA J., DONG Z.-Y., HE R.-M., HILL D.J., Measurement-based Load Modeling using Genetic Algorithms, Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pp. 2909–2916, 25-28 Sept. 2007.
  • [8] MAITRA A., GAIKWAD A., POURGEIK P., BROOKS D., Load Model Parameter Derivation Using an Automated Algorithm and Measured Data, Power and Energy Society General Meeting -Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, pp. 1–7, 20-24 July 2008.
  • [9] WEN F J.Y., JIANG L., WU Q.H., CHENG S.J., Power System Load Modeling by Learning Based on System Measurements, Power Delivery, IEEE Transactions on, vol. 18, no. 2, pp. 364–371, April 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0025-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.