PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the Effect of Heat Stress on the Damage of the Fibre Matrix Interface of a Composite Material (T300/914) by Means of a Genetic Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ stresu termicznego na uszkodzenie warstwy międzyfazowej kompozytu włóknistego z zastosowaniem algorytmu genetycznego
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to develop an analytical model to evaluate the influence of thermal stress on damage to the fiber-matrix interface of a composite T300/914 from the properties of the fibre, as well as from the matrix and characteristics of the interfacial binding. The model developed by a genetic algorithm takes into account the temperature effects that result in the progressive degradation of the fibre-matrix. This work shows the influence of thermal stress beyond the critical threshold of damage to the interface, and that the matrix damage has an important influence on the damage to the interface compared to that of the fiber.
PL
Celem badań było opracowanie modelu analitycznego do oceny wpływu stresu termicznego na uszkodzenia warstwy międzyfazowej kompozytu T300/914 na podstawie właściwości włókien i matrycy oraz charakterystyki połączenia. Model opracowany przez algorytm genetyczny uwzględnia wpływ temperatury, który prowadzi do degradacji matrycy. Artykuł opisuje również wpływ stresu termicznego w warunkach krytycznych.
Rocznik
Strony
108--111
Opis fizyczny
Bibliogr. 32 poz.,
Twórcy
autor
autor
autor
autor
  • Algeria, Oran, University of Science and Technology, Faculty of Science, Physics Department
Bibliografia
  • 1. Batdorf SB. Tensile strength of unidirectionally reinforced composites - 1. Journal of reinforced plastics and composites 1982; 1: 153–163,165–175.
  • 2. Baxevanakis C. Statistical behavior of laminated composites at failure. Thèse,Ecole des Mines de Paris, 1994.
  • 3. Blassiau S. Modeling of microstructural phenomena in a unidirectional composite carbon / epoxy and lifetime prediction:characterization and control of wound tanks. Thesis, Ecole des Mines de Paris, 2005.
  • 4. Blassiau S, Thionnet A, Bunsell A. Micromechanisms of load transfert in a unidirectional carbon-fibre epoxy composite due to fibre failures. part 1: Micromechanisms and 3d analysis of load transfert, the elastic case. Composite Structures 2006; 74: 303–331.
  • 5. Blassiau S, Thionnet A, Bunsell A. Micromechanisms of load transfert in a unidirectional carbon-fibre epoxy composite due to fibre failures. part 3: multiscale reconstruction of composite behaviour.Composite Structures 2008; 83:312-323.
  • 6. Cox HL. The elasticity and strength of paper and other fibrous materials. British journal of applied physics 1952; 12:72-79.
  • 7. Goree JG, Gross R. Stresses in a threedimensional unidirectional composite containing broken fibres. Engineering fracture mechanics 1980; 13: 395–405 .
  • 8. Guillaumat L, Microcracking of CMC:Relationship with the microstructure and mechanical behaviour. Thesis No.1056, University of Bordeaux I, February,1994.
  • 9. Harlow DG, Phoenix SL. The chainof-bundles probability model for the strength of fibrous materials 1: Analysis and conjectures. Journal of Composite Materials 1978; 12: 195-213.
  • 10. Hedgepeth JM. Stress concentrations in filamentary structures. Rapport, NASA TND882, Langley research center, 1961.
  • 11. Hedgepeth JM, Van Dyke P. Local stress concentrations in imperfect filamentary composite materials. Journal of composite materials 1967; 1: 294-309.
  • 12. Kong P. A monte carlo study of the strength of unidirectional fibre-reinforced composites. Journal of Composite Materials 1979; 13: 311-327.
  • 13. Lagoudas DC, Hui CY, Phoenix SL.Time evolution of overstress profiles near broken fibres in a composite with a viscoelastic matrix. International Journal of Solids and Structures 1989; 25:45-66.
  • 14. Landis CM, Beyerlein IJ, McMeeking RM. Micromechanical simulation of the failure of fibre reinforced composites. Journal of the Mechanics and Physics of Solids 2000; 48: 621–648.
  • 15. Landis CM, McMeeking RM. Stress concentrations in composites with interface sliding, matrix stiffness and uneven fibre spacing using shear lag theory. International Journal of Solids and Structures 1999; 36: 4333–4361.
  • 16. Lebrun G-A. Thermomechanical behavior and lifetime of ceramic matrix composites:theory and experiment. Ph.D. Thesis, n° 1606, University of Bordeaux I, 1996.
  • 17. Lem J, Chaboche J. Mécanique des matériaux solides. Edition Dunod, 1988.
  • 18. Lifschitz JM, Rotem A. Time-dependent longitudinal strength of unidirectional fibrous composites. Fibre science and technology 1970; 3: 1–20.
  • 19. Lissart N. Domage and failure in ceramicmatrix minicomposites :experimental study and model. Acta Mater. 1997; 45,3: 1025-1044.
  • 20. Nedele MR, Wisnom MR. Three dimensional finite analysis of the stress concentration at a single fibre break. Composites Science and Technology 1994;51: 517–524.
  • 21. Ochiai S,Schulte K, Peters PW. Strain concentration for fibres and matrix in unidirectional composites. Composites Science and Technology 1991; 41:237–256.
  • 22. Phoenix.SL. Statistical issues in the fracture of brittle matrix fibrous composites: localized load-sharing and associated size effects. International Journal of Solids and Structures 1997; 34: 2649–2668.
  • 23. Péres P. Theoretical and experimental analysis of the role of microstructural parameters on the behavior of brittle matrix composites. PhD thesis n° 3781,University of Lyon, 1988.
  • 24. Phoenix.SL, Beyerlein IJ. Statistical strength theory for fibrous composite materials In: Kelly A and Zweben C.(eds) Comprehensive composite materials.Pergamon-Elsevier Science,2000,pp. 559–639.
  • 25. Rosen BW. Tensile failure of fibrous composites. AIAA Journal 1964; 2:1985–1991.
  • 26. Scop PM, Argon AS. Statistical theory of strength of laminated composites.Journal of Composite Materials 1967; 1:92–99.
  • 27. Scop PM, Argon AS. Statistical theory of strength of laminated composites 2.Journal of Composite Materials 1969; 3:30–44.
  • 28. Van den Heuvel PWJ, Goutianos S, Young RJ, Peijs T. Failure phenomena in fibre-reinforced composites Part 6: A finite element study of stress concentrations in unidirectional cfr epoxy composites.Composites Science and Technology 2004; 64: 645–656.
  • 29. Van den Heuvel PWJ, Wubbolts MK, Young RJ, Peijs T. Failure phenomena in two-dimensional multi-fibre model composites: 5. a finite element study.Composites A 1998; 29: 1121–1135.
  • 30. Weibull W. A statistical theory of the strength of materials. Royal Swedish Academy of Eng. Sci. Proc. 1939; 151: 1-45.
  • 31. Wisnom MR, Green D. Tensile failure due to interaction between fibre breaks.Composites 1995; 26: 499–508.
  • 32. Zweben C, Tensile failure of fibres composites.AIAA journal 1968; 6: 2325–2331.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0024-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.