PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Load-Elongation Characteristics of Connecting and Shock-Absorbing Components of Personal Fall Arrest Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyki siła - wydłużenie elementów łączących i amortyzujących stosowanych w sprzęcie chroniącym przed upadkiem z wysokości
Języki publikacji
EN
Abstrakty
EN
The process of arresting a fall from a height by protective equipment is characterised by two most important values: the arrest force and the distance over which the fall arrest occurs. The time course of these values is determined primarily by the mechanical parameters of the connecting and shock-absorbing components of the fall arrest system, such as textile energy absorbers, retractable type fall arresters and guided type fall arresters. The paper presents the methods of testing used up till now to determine the properties of connecting and shock-absorbing components. Their disadvantages are demonstrated and a new method allowing to determine the load-elongation characteristics of connecting and shockabsorbing components containing textile elements is described. The method presented and test stand are based on simultaneous measurements of the force acting in the object investigated and its elongation. For measurements of elongation under dynamic conditions, an extensometer equipped with a high speed camera was used. The results of tests performed under static and dynamic conditions on objects made of fibre rope and webbing used in equipment protecting against falls from a height are presented. The results obtained demonstrate significant differences between these characteristics, which confirms the effect of the loading velocity on the mechanical parameters of textile elements used as parts of personal fall arrest systems. Therefore data allowing to develop numerical models of connecting and shock-absorbing components were obtained.
PL
W artykule przedstawiono metody badania stosowane dotychczas w celu określenia właściwości ochronnych elementów łączących i amortyzujących. Wykazano ich wady i zaprezentowano nową metodę pozwalającą na wyznaczanie charakterystyk siła - wydłużenie elementów zawierających struktury włókiennicze. Zaprezentowana metoda i stanowisko badawcze opiera się na równoczesnym pomiarze siły działającej w badanym obiekcie oraz jego wydłużenia. Dla potrzeb pomiaru wydłużeń w warunkach dynamicznych zastosowano ekstensometr z kamerą do szybkich zdjęć. Przedstawiono wyniki badań, prowadzonych w warunkach statycznych i dynamicznych, obiektów wykonanych z lin i taśm włókienniczych stosowanych do produkcji sprzętu chroniącego przed upadkiem z wysokości. Uzyskane wyniki wykazały istotne różnice między tymi charakterystykami. Potwierdziło to wpływ prędkości obciążania na parametry mechaniczne włókienniczych elementów sprzętu chroniącego przed upadkiem z wysokości. Dzięki temu uzyskano dane pozwalające na opracowanie modeli numerycznych elementów łącząco-amortyzujących.
Rocznik
Strony
78--85
Opis fizyczny
Bibliogr. 25 poz.,
Twórcy
autor
  • Poland, Łódź, Central Institute for Labour Protectionp - National Research Institute, Department of Personal Protective Equipment
Bibliografia
  • 1. Report of the Chief Labour Inspector concerning the activity of the National Labour Inspectorate in 2010, Warszawa 2010.
  • 2. Central Statistical Offce, Labour Division: Accidents at work in 2010.
  • 3. Sulowski AC. Fall protection systems – selection of equipment. In A.C. Sulowski (Ed.), Fundamentals of fall protection. Toronto, Canada: International Society for Fall Protection 1991, pp. 303 – 320.
  • 4. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height – Self locking arrester on fexible anchorage line (Standard No. EN 353-2:2002). Brussels, Belgium.
  • 5. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height – Lanyards (Standard No. EN 354:2002). Brussels, Belgium.
  • 6. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height – Energy absorbers (Standard No. EN 355:2002). Brussels, Belgium.
  • 7. European Committee for Standardization (CEN). (2002). Personal protective equipment against falls from a height – Retractable type fall arresters (Standard No. EN 360:2002). Brussels, Belgium.
  • 8. Baszczyński K. Equipment protecting against falls from a height. In :D. Koradecka (Ed.), Handbook of Occupational Safety and Health. New York, USA: CRC Taylor & Francis Group; 2009 (pp. 543-548).
  • 9. Sulowski AC. Assessment of maximum arrest force in fall arresting systems. In: A.C. Sulowski (Ed.), Fundamentals of fall protection. Toronto, Canada: International Society for Fall Protection; 1991, pp. 165 – 192.
  • 10. Baszczyński K, Zrobek Z. Elongation of guided type fall arresters as a source of hazards. Bezpieczeństwo Pracy, Centralny Instytut Ochrony Pracy, Warszawa, January 1998; 1: 17-20.
  • 11. Sulowski AC. Fundamentals of fall protection. Residual risk in fall arresting systems. Toronto: International Society for Fall Protection; 1991: 321-344.
  • 12. Baszczyński K, Zrobek Z. Effect of atmospheric conditions on performance of guided type fall arresters. Bezpieczeństwo Pracy, Centralny Instytut Ochrony Pracy, Warszawa, 2000; 6:17-19.
  • 13. Vogwell J, Minguez, JM. The safety of rock climbing protection devices under falling loads. Engineering Failure Analysis 2007; 14 (6): 1114.
  • 14. Baszczyński K, Zrobek Z. Dynamic Performance of Horizontal Flexible Anchorage Lines During Fall Arrest - A Numerical Method of Simulation. International Journal of Occupational Safety and Ergonomics, Central Institute for Labour Protection 2000; 6, 4: 521-534.
  • 15. Tumajer P, Ursiny P, Bilek M, Mouckova E. Research Methods for the Dynamic Properties of Textiles. Fibres & Textiles in Eastern Europe 2011; 19, 5(88): 33-39.
  • 16. European Committee for Standardization (CEN). Personal protective equipment against falls from a height – Test methods (Standard No. EN 364:1992). Brussels, Belgium: CEN; 1992.
  • 17. Sulowski AC. Assessment of maximum arrest force in fall arresting systems. In: A.C. Sulowski (Ed.) Fundamentals of fall protection. Toronto, Canada: International Society for Fall Protection; 1991: 165 – 192.
  • 18. Baszczyński K, Zrobek Z. Test method for retractable type fall arresters designed for horizontal use. JOSE 2003; 9; 3: 313-331
  • 19. European Committee for Standardization (CEN). (2004). Mountaineering equipment - Dynamic mountaineering ropes - Safety requirements and test methods. (Standard No. EN 892:2004). Brussels, Belgium.
  • 20. Baszczyński K. Infuence of weather conditions on the performance of energy absorbers and guided type fall arresters on a fexible anchorage line during fall arresting. Safety Science 2004; 42: 519-536.
  • 21. Miura N, Sulowski AC. Fundamentals of fall protection. Introduction to horizontal lifelines. Toronto: International Society for Fall Protection, 1991: 217-283.
  • 22. Spierings AB, Stampfi R. Methodology for the development of an energy absorber: Application to worker security ropes. International Journal of Impact Engineering 2006; 32, 9: 1370-1383.
  • 23. Robinson L. Development of a technique to measure the dynamic loading of safety harness and lanyard webbing. HSL/2006/37.
  • 24. Co-ordination of Notifed Bodies PPE-Directive 89/686/EEC + amendments. Recommendation for Use RfU CNB/P/1.024.
  • 25. Directive on Personal Protective Equipment (PPE) 89/686/EEC.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0024-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.