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Abstract
 The dynamic properties of a mathematical model of a layer of fibres are studied in this 
paper. It is shown that the layer significantly restricts the amplitude of vibration of a sup-
ported mass, which is subject to a compressive oscillating force. For certain frequencies of   
sufficiently large oscillatory force a chaotic motion may take place.
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equal to zero, one gets the equation of 
motion (4).
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Formula (1) into equation (4) gives ordi-
nary nonlinear differential equations (5).
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By requiring that the resultant of all forc-
es (Figure 2.b) acting on the system of 
masses m and m1 be equal to zero, we get 
equation (6).
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The sum of moments of all forces with 
respect to the centre of rotation gives 
equation (7).
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Substituting equation (7) into equation 
(6) gives equation (8).
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troduce the material characteristic which 
does not have that feature and smoothly 
restricts the motion.

n	 Equations of motion
The system considered is shown in Fig-
ure 1. The mass m lies on the layer of 
fibres and is subject to a time varying 
force. Under the action of a compressive 
force, the fibres gradually lock, when 
they come into mutual contact [1], giving 
the reaction force Fr (1). In formula (1) k, 
c, L, H are material constants, introduced 
and explained in paper [4]. The position 
of mass m is measured from the layer of 
an uncompressed height downward and 
is denoted by y. In Figure 1.b mass m1 
is connected to mass m with a link of 
length r and rotates with respect to mass 
m, the angle of rotation is denoted by α. 
The vibrations are excited either by the 
explicitly given time periodical force Fe 
(Figure 1.a) of known angular frequency 
ω (2) or the inertia forces (Figure 1.b) 
of a rotating mass m1. Mass m1 is driven 
by the torque M (3) of a motor of known 
idle angular velocity Ω. In formula (3) T 
is the motor time constant and C denotes 
the stiffness of the motor characteristic. 
The actual angular velocity dα/dt of the 
motor is a result of the mutual interaction 
of system elements. 
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By requiring that the resultant of all 
forces (Figure 1.a) acting on mass m be 

n	 Introduction
Studies of the behaviour of textiles un-
der compression can be found in works 
[1 - 3]. A mathematical model of a layer 
of fibres submerged in a fluid was for-
mulated in paper [4]. The properties of 
the layer were assumed to be determined 
by the bending elasticity of fibres and 
by the resistance to the fluid flow that 
is squeezed out of the layer. The author 
showed that filling the layer with a fluid 
considerably decreases its reaction to an 
impact force. In this paper, vibrations of 
a system containing a layer of fibres used 
as a vibration insulator are studied. The 
object usually used for this purpose – a 
helical spring behaves linearly in some 
range, but when the coils come into mu-
tual contact the discontinuity of this be-
haviour takes place and an impact force 
occurs. The purpose of this paper is to in-

Figure 1. Vibrating mass m lying on a layer 
of fibres (a) subject to an excitation force 
Fe, (b) subject to excitation by the inertia 
forces of the rotating mass m1. 
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in Figure 4 for Ω/ω0 = 7.5. It can be seen 
in Figure 3 that for Ω/ω0 = 4.5 the motion 
is chaotic, which is a result of the loss of 
contact between the mass and the layer 
for y < 0, when the contact force F = 0. 
When the mass is above the layer, with-
out being supported by, it moves freely 
up and falls back onto the layer, not in 
accordance with the frequency of oscil-
lation, resulting in chaotic motion [5, 6]. 
During the contact between the mass and 
layer, the reaction force F becomes larger 
than the centrifugal force Fn = m1Ω2r. 
For Ω/ω0 = 7.5, as shown in Figure 4, the 
motion is periodic and the reaction force 
F is smaller than the centrifugal force 
Fn = m1Ω2r. 

n	 Conclusions
1.	 The increasing stiffness of the layer 

resulting from fibres locking restricts 
the maximum vibration amplitude.

2.	 For a certain range of excitation fre-
quency, chaotic motion can occur.

3.	 Over the range of frequency for 
which chaotic motion takes place, 
the vibrations can become periodic of 
limited amplitude and limited reac-
tion force.

4.	 The material characteristic studied 
in this paper is free from the lock-
ing impact, as opposed to a helical 
spring, and it can find application for 
the design of vibration insulators that 
restrict the amplitude of vibration. 
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Equation 9.

Figure 2. Maximum steady-state amplitude y of vibrations: (a) versus angular frequency of excitation ω for various magnitudes of the 
exciting force F0; (b) versus idle motor angular velocity Ω for a rotating mass m1 = 1 and 20 kg. 

Substituting formula (1) into equation (8) 
yields equation (9).

	 Numerical results 
and discussion

The differential equations were solved 
using the Runge-Kutta method. The 
calculations were performed by chang-
ing the excitation frequency from a zero 
value upwards and then back downwards 
by letting the motion achieve steady-state 
vibrations at each value of the frequency. 
The maximum amplitudes of vibrations, 
described by equation (5) for cosine ex-
citation (2), are shown in Figure 2.a. The 
maximum amplitudes of vibrations ex-
cited by the centrifugal force of a motor 
which drove a rotating mass, as described 
by equations (3, 7, 9), are shown in Fig-
ure 2.b. The following values of param-
eters were taken: stiffness k, defined by 
ω0 = (k/m)0.5 = 250/30 rad/s, damping 
coefficient c/m = 500/80 m-1, mate-

rial constants L=0.02m, H=0.02m, mass 
m = 80 kg, force F0/(mg) = (1/10, 4, 100) 
and for a rotating mass m1 = 1 and 20 kg, 
ω0 = (k/(m+m1))0.5 = 250π/30 rad/s, ro-
tating rod length r = 0.01 m, motor con-
stants T = 0.1 s, C = 0.1 Nms.

In Figure 2.a, one may see that an in-
crease in the compressive excitation force 
by thousand times (100/0.1) resulted only 
in an approximately three times increase 
in the mass displacement, which is a re-
sult of the increasing stiffness of the lay-
er (1) with an increase in the magnitude 
of compression y. A similar behaviour 
can be observed in Figure 2.b for mass 
m1 = 1 kg. For mass m1 = 20 kg the be-
haviour of the system significantly dif-
fers from that of the other parameters.

In order to explain this difference, the 
mass motion simulation obtained from 
the set of equations (3, 7, 9) for m1 = 20 kg 
is shown in Figure 3 for Ω/ω0 = 4.5 and 

w/w0 W/w0

y/
L

y/
L

ky



77FIBRES & TEXTILES in Eastern Europe  2012, Vol. 20, No.  6A (95)

3.	 Carnaby GA, Pan N. Theory of the 
compression hysteresis of fibrous 
assemblies. Textile Research Journal 
1989; 59: 275-84.

4.	 Zajączkowski J. Impact of an object on 
a layer of fibres submerged in a fluid. 
Fibres & Textiles in Eastern Europe 
2010; 18, 6 (83), 60-62.

5. Francis C. Moon. Chaotic Vibrations: An 
Introduction for Applied Scientists and 

Engineers. 2004, Wiley, John & Sons, 
Incorporated.

6. Guckenheimer J. Holmes Ph. Nonlinear 
Oscillations, Dynamical Systems, and 
Bifurcations of Vector Fields. Applied 
Mathematical Sciences 2012;  42.

References
1.	 Beil NB, Roberts Jr WW.  Modelling 

and computer simulation of the com
pressional behaviour of fiber assem
blies, Part II: hysteresis, crimp, and ori
entation effects. Textile Res. J. 2002b; 
72; 5: 375-82.

2. Taylor PM, Pollet DM. Static low-load 
lateral compression of fabrics. Textile 
Research Journal 2002; 72; 11: 983-990. 

Figure 3. Chaotic motion – mass displacement y and reaction force versus the angle of revolution α after one million revolutions, for mass 
m1 = 20 kg and motor idle velocity Ω/ω0 = 4.5. 

Figure 4. Periodic motion – mass displacement y and reaction force versus the angle of revolution α after one million revolutions, for mass 
m1 = 20 kg and motor idle velocity Ω/ω0 = 7.5. 
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