Identyfikatory
Warianty tytułu
Model symulacyjny dla oceny współczynników absorpcji dźwięku dwuwarstwowych włóknin
Języki publikacji
Abstrakty
Zaproponowano zastosowanie ogólnego modelu absorpcji dźwięku dla dwuwarstwowych dzianin opartego na teorii C. Zwikkera i C. W. Kostena. Model uwzględnia propagacje fal przez porowate odkształcalne media przyjmując odpowiednie warunki brzegowe charakterystyczne dla danego układu. Symulacja modelu została podzielona w zależności od zmiennych struktur obiektu. Dwuwarstwowe włókniny składały się z wewnętrznej warstwy włókien poliestrowych oraz zewnętrznej włókien nylonowych. Analizowano współczynniki absorpcji fal dźwiękowych badając wpływ grubości warstw oraz ich porowatości. Stwierdzono, że można uzyskać dobre właściwości tłumiące dla odpowiedniej konfiguracji warstw w określonym, ograniczonym zakresie częstotliwości. Za pomocą przedstawionego modelu można teoretycznie obliczyć współczynniki absorpcji dwuwarstwowych układów włóknin.
In this paper, a more general sound absorption model for double layered nonwovens is proposed firstly by using the theory of C. Zwikker and C. W. Kosten for sound propagation through porous flexible media and sound propagation boundary conditions, and then a model simulation is detailed by changing the effective structure parameters of nonwovens. Double layered nonwovens composed of polyester fiber in the outer layer and nylon fiber in the inner layer is investigated in detail and the effects of acoustic parameters including the thickness and porosity of each layer on the absorption coefficient are analysed by numerical calculation, respectively. It shows that a double layered sound absorbing structure made of nonwovens has excellent sound absorption and can afford a sufficiently satisfying sound absorption level in a cared frequency range. In theory, this model can be used to calculate the absorption coefficients of double layered nonwovens composed of two different nonwoven materials . In practice, the sound absorption model for double layered nonwovens provides theoretical support for high performance sound absorber design and manufacture.
Czasopismo
Rocznik
Strony
102--107
Opis fizyczny
Bibliogr. 23 poz.
Bibliografia
- 1. Shoshani Y, Yakubov Y. A model for calculating the noise absorption capacity of nonwovens. Textile Research Journal 1999; 7: 519-526.
- 2. Shoshani Y, Yakubov Y. Numerical assessment of maximal absorption coefficients for nonwovens. Applied Acoustics 2000; 59: 77-87.
- 3. Garai M, Pompoli F. A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics 2005; 12: 1383-1398.
- 4. Shoshani Y. Studies of textile assemblies used for acoustic control. Technical Textiles International 1993; 3: 32-34.
- 5. Shoshani Y, Rosenhouse G. Noise insulating blankets made of textiles. Applied Acoustics 1992; 35:129-138.
- 6. Shoshani Y, Rosenhouse G. Use of nonwovens in the design of acoustic ceilings. In: INDA conference, St. Petersburg, Florida, 1995. pp. 267-274.
- 7. Sgard FC, Olny X, Atalla N. et al. On the use of perforations to improve the sound absorption of porous materials. Applied Acoustics 2008; 6: 625-651.
- 8. Mitri FG, Fellah ZEA. Theoretical calculation of the acoustic radiation force on layered cylinders in a plane standing wave-comparison of near- and far-field solutions. Journal of Physics A-Mathematical and General 2006; 20: 6085-6096.
- 9. Jansens G, Lauriks W, Vermeir G. et al. Free field measurements of the absorption coefficient for nonlocally reacting sound absorbing porous layers. Journal of the acoustical society of America 2002; 4: 1327-1334.
- 10. Zwikker C, Kosten CW. Sound absorbing materials. Oxford: Elsevier Pub Co,1949.
- 11. Dent RW. The sound absorption properties of felts. In: UMIST 1983 Conference (ed Cusick GE), 1983, pp. 257-312.
- 12. Dahl MD, Rice EJ, Groesbeck DE. Effects of fibre motion on the acoustic behavior of an anisotropic, flexible fibrous material. Journal of the Acoustical Society of America 1990; 1: 54-66.
- 13. Lambert RF. Acoustic resonance in highly porous, flexible, layered fine fibre materials.Journal of the Acoustical Society of America 1993; 3: 1227-1234.
- 14. Lambert RF. Low Frequency Acoustic Behavior of Highly Porous, Layered,Flexible Fine Fibre Materials. Journal of the Acoustical Society of America 1995;2: 818-821.
- 15. Honarvar MG, Jeddi AAA, Tehran MA.Noise Absorption Modeling of Rib Knitted Fabrics. Textile Research Journal 2010; 80: 1392-1404.
- 16. Lee YE, Joo CW. Sound absorption properties of thermally bonded nonwovens based on composing fibres and production parameters. Journal of Applied Polymer Science 2004; 92: 2295-2302.
- 17. Jiang N, Chen JY, Parikh DV. Acoustical evaluation of carbonized and activated cotton nonwovens. Bioresource Technology 2009; 100: 6533–6536.
- 18. Chen X, Vroman P, Lewandowski M, Perwuelz A, Zhang Y. Study of the Influence of Fibre Diameter and Fibre Blending on Liquid Absorption Inside Nonwoven Structures. Textile Research Journal 2009; 15: 1364-1370.
- 19. He L, Zhu HC, Qiu XJ, Du GH. Acoustic Theory and Engineering Applications. Beijing: Science press, 2006.
- 20. Shoshani Y, Yakubov Y. Generalization of Zwikker and Kosten Theory for Sound Absorption in Flexible Porous Media to the Case of Variable Parameters. Journal of Computational Acoustics 2000; 3: 415-441.
- 21. Shoshani Y, Yakubov Y. Use of nonwovens of variable porosity as noise control elements. International Nonwovens Journal 2001; 4: 23-28.
- 22. Yilmaz ND, Banks-Lee P, Powell NB,Michielsen S. Effects of Porosity, Fibre Size, and Layering Sequence on Sound Absorption Performance of NeedlePunched Nonwovens. Journal of Applied Polymer Science 2011; 5: 3056-3069.
- 23. Thilagavathi G, Pradeep E, Kannaian T, Sasikala L. Development of Natural Fibre Nonwovens for Application as Car Interiors for Noise Control. Journal of Industrial Textiles 2010; 3: 267-278.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0065