PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Future Trends in the Development of Thermal Manikins Applied for the Design of Clothing Thermal Insulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przyszłe trendy w rozwoj manekinów termicznych stosowanych do projektowania izolacyjności cieplnej odzieży
Języki publikacji
EN
Abstrakty
EN
Thermal manikins were created with the intention to design and model protective clothing insulation for specific conditions, e.g. military clothing and clothing for divers. At present thermal manikins have a broader use, i.e. to assess the effect of clothing on a human body, to assess its influence on thermal comfort during work in a given clothing ensemble and to test innovative solutions bringing about a reduction in the thermal heat load. When using thermal manikins it should be borne in mind that heat exchange through clothing is, to a large extent, determined by the temperature distribution on human skin. The aim of the study was to find out to what extent thermal manikins can be used to represent the correct distribution of temperature on human skin. To this end, comparative measurements of the temperature distribution on the surface of a standard thermal manikin with a structure generally used and on the surface of the skin of volunteers were performed. The tests conducted showed that for the further development of thermal manikins computer software should be developed which would help to predict the temperature distribution on the manikin surface corresponding to the skin temperature of volunteers. Such software should allow for the simulation of thermal regulatory mechanisms in a human, i.e. an increase in skin temperature caused by vasoconstriction and shivering, as well as a decrease in skin temperature due to vasodilatation and sweating. In a thermally neutral environment, the methods which are currently used to control the thermal manikin seem to be sufficient.
PL
Termiczne manekiny zostały opracowane w celu projektowania i modelowania izolacyjności cieplnej odzieży ochronnej. Obecnie manekiny termiczne mają szerokie zastosowanie badawcze. Stosując manekiny termiczne należy pamiętać, że wymiana ciepła przez odzież zależy w dużej mierze od rozkładu temperatury skóry człowieka. Celem badań przedstawionych w artykule było sprawdzenie, w jakim stopniu manekiny termiczne mogą być używane do prognozowania prawidłowego rozkładu temperatury skóry człowieka. W tym celu przeprowadzono badania porównawcze rozkładu temperatury na powierzchni standardowego manekina termicznego powszechnie stosowanego w wielu laboratoriach badawczych i na powierzchni skóry ochotników. Przeprowadzone testy wykazały, że rozwój manekinów termicznych powinien być ukierunkowany w celu opracowania odpowiedniego oprogramowania komputerowego, które byłyby pomocne do prognozowania rozkładu temperatury na powierzchni manekina odpowiadającego temperaturze skóry ochotników.
Rocznik
Strony
89--95
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • Poland, Warsaw, Central Institute for Labour Protection - National Research Institute, Department of Ergonomics
Bibliografia
  • 1. Holmer I. Thermal manikin history and applications. Eur J Appl Physiol 2004; 92: 614–618.
  • 2. Fan J, Chen YS. Measurement of clothing thermal insulation and moisture vapour permeability using a novel perspiring fabric thermal manikin. Meas Sci Technol 2002; 13: 1115–1123.
  • 3. Ducharme MB, Tikuisis P, Potter P. Selection of military survival gears using thermal manikin and computer survival model data. Eur J Appl Physiol 2004; 92: 658–662.
  • 4. Goldman R. EMAX and the heated, sweating and walking manikin. In: 10th international conference on environmental ergonomics, Fukuoka, Japan, 23–27 September 2002, pp 447–450.
  • 5. Fan J, Qian X. New functions and applications of Walter, the sweating fabric manikin. Eur J Appl Physiol 2004; 92: 641–644.
  • 6. Fukazawa T, Lee G, Matsuoka T, Kano K, Tochihara Y. Heat and water vapour transfer of protective clothing systems in a cold environment, measured with a newly developed sweating thermal manikin. Eur J Appl Physiol 2004; 92: 645–648.
  • 7. Kuklane K, Sandsund M, Reinertsen RE, Tochihara Y, Fukazawa T, Holmer I. Comparison of thermal manikins of different body shapes and size. Eur J Appl Physiol 2004; 92: 683–688.
  • 8. Anttonen H. Interlaboratory trial of thermal manikin based on thermal insulation of cold protective clothing in accordance with ENV 342. In: Nilsson H, Holme´ r I (eds) The third international meeting on thermal manikin testing. Arbete och 4, National Institute for Working Life, Stockholm, 2000: pp 8–11.
  • 9. Kuklane K, Holme’r I, Anttonen H, Burke R, Doughty P, Endrusick T, Hellsten M, Shen Y, Uedelhoven W. Interlaboratory tests on thermal foot models. Thermal Environment Laboratory. EAT Report 2003:01, Department of Design Sciences, Lund University, Sweden.
  • 10. McCullough E, Barker R, Giblo J, Higenbottam C, Meinander H, Shim H, Tamura T. An interlaboratory study of manikins used to measure the thermal and evaporative resistance of clothing. IER Technical Report 2002: 02-04, Institute for Environmental Research, Kansas State University, Manhattan, Kansas.
  • 11. Meinander H, Anttonen H, Bartels V, Holme´r I, Reinertsen RE, Soltynski K, Varieras S. Thermal insulation measurements of cold protective clothing using thermal manikins. SUBZERO project final report 2003. Fibre Materials Science, Tampere University of Technology, Tampere, Finland
  • 12. Burke, R. Rugh, J. Farrington R. ADAM – the Advanced Automotive Manikin. In: 5th International Meeting on Thermal Manikins and Modeling, Strasbourg, France, 2003.
  • 13. Konarska M, Soltynski K, Sudol-Szopinska I, Młoźniak D, Chojnacka A. Aspects of standardization in measuring clothing thermal insulation on thermal manikin. Fibres & Textiles in Eastern Europe 2006; 14, 4 (58): 58 – 63.
  • 14. Holmer I. Heated manikins as a tool for evaluating clothing. Annals of occupational hygiene 1995; 39, 6: 809-818.
  • 15. ISO 15831:2004. Clothing - Physiological effects - Measurement of thermal insulation by means of a thermal manikin.
  • 16. ASTM F 1291-05. Test Method for Measuring the Thermal Insulation of Clothing Using a Heated Manikin.
  • 17. Bendkowska W, Kłonowska M, Kopias K, Bogdan A. Thermal Manikin Evaluation of PCM Cooling Vests. Fibres & Textiles in Eastern Europe 2010; 18, 1 (78):70-74.
  • 18. Konarska M, Soltynski K, Sudol-Szopinska I, Chojnacka A. Comparative evaluation of clothing thermal insulation measured on a thermal manikin and on volunteers. Fibres & Textiles in Eastern Europe 2007; 15, 2 (61):79 – 85.
  • 19. Bullard RW, Banerjee MR, Chen F, Elizondo R, McIntyre BA. Skin temperature and thermoregulatory sweating: A control systems approach. In: Physiological and Behavioral Temperature Regulation. ed. Hardy & Gagge & Stolwijk, Springfield, 1970, pp. 597-610.
  • 20. Hensel H. Thermoreception and temperature regulation. (Monographs of the physiological society; no.38), 1981, Academic Press, London
  • 21. Chludzińska M, Bogdan A, Mizieliński B. Application of the thermal manikin for ventilation and air-conditioning system assessment. In: Environmental Engineering II. Ed. Pawłowski L., Dudzińska R.M., Pawłowski A., CRC Press, Tylor & Francis Group, London, UK 2010.
  • 22. Fanger PO. Thermal Comfort—Analysis and Application in Environmental Engineering. Danish Technical Press, Copenhagen, 1970.
  • 23. Buono MJ, Jechort A, Marques R, Smith C, Welch J. Comparison of infrared versus contact termometry for measuring skin temperature during exercise in the heat. Physiol. Meas. 2007; 28: 855–859.
  • 24. Matusiak M. Thermal Comfort Index as a Method of Assessing the Thermal Comfort of Textile Materials, Fibres & Textiles in Eastern Europe 2010; 18, 2 (79): 45-50.
  • 25. Stolwijk J Mathematical model of thermoregulation. Physiological and behavioral temperature regulation. Ed Hardy JD, Gagge AP and Stolwijk AJ, Thomas Publisher, Springfield III, 1971, pp. 703-721.
  • 26. Wisslar EH. A mathematical model of the human thermal system. Bull.Math. Biophys. 1964; 26: 147–166.
  • 27. Tanabe S, Kozo Kobayashia, Junta Nakanoa, Yoshiichi Ozekib and Masaaki Konish. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy and Buildings 2002; 34(6): 637-646.
  • 28. Fiala D. Dynamic Simulation of Human Heat Transfer and Thermal Comfort. PhD Thesis , Institute of Energy and Sustainable Development DE MONTFORT UNIVERSITY LEICESTER and Joseph-von-Egle Institut für angewandte Forschung FH STUTTGART - HOCHSCHULE FÜR TECHNIK, 1998.
  • 29. Bogdan A. Thermal impact of a human body on changes in a microclimate of a room; available (in Polish), CIOP-PIB, Warsaw, 2010. ()
  • 30. Fu G, Jones B. Conbined finite element human thermal model and finite different clothing model. In Enviromental Ergonomics. , Tel Aviv, 1996: pp. 166-169.
  • 31. Farrington R, Rugh J, Bharathan D, Burke R. Use of a Thermal Manikin to Evaluate Human Thermoregulatory Responses in Transient, Non-Uniform, Thermal Environments. In: 4th International Conference on Environmental Systems. SAE 2004-01-2345, Colorado Springs, CO, 2004.
  • 32. Bogdan A. Case Study Assessment of Local and General Thermal Comfort by Means of Local Skin Temperature. International Journal of Ventilation 2011; 10; 3: 291-300.
  • 33. Bogdan A, Sudoł-Szopińska I. Thermal load at workstations. In: Handbook of Occupational Safety and Health. Ed.: Koradecka D., CRC Press,Taylor & Francis Group, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.