PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of Sportswear Fabric Properties on the Health and Performance of Athletes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ właściwości materiałów używanych do produkcji ubiorów sportowych na zdrowie i wydajności sportowców
Języki publikacji
EN
Abstrakty
EN
The main goal of this work was to study the Influence of sportswear fabric properties on the physiological responses and performance of athletes. The influence of three different types of sportswear fabrics on the physiological response and performance of volunteers in sports conditions was investigated. The fabrics and garments tested were made of 100% cotton, a 65/35 polyester/cotton blend and 100% polyester fibres. Seven volunteer were selected to wear the sportswear during the physical exercise assigned and their physiological responses were tested. The results of the study show a statistically significant effect on the athletes' physiological responses and performance parameters measured for the different types of sportswear tested. The sample with 100% polyester produced the best physiological responses and performance from the athletes. This effect can be related to better moisture management, which reflects the amount of relative water vapour permeability (68%) and lower thermal conductivity. This will enhance the body's temperature regulation leading to increase athletes' cardiorespiratory fitness and performance. The results also show the high correlation between the sportswear fabrics properties and athletes' physiological responses and performance, except the relationship between the end-tidal partial pressure of oxygen (PETO2) and fabric thickness (h), air permeability (AP) and thermal resistance (r), which are not highly correlated. The other correlation values vary between (š0.62 and (š1).
PL
Badano właściwości ubiorów sportowych na fizjologiczną odpowiedź oraz wytrzymałość organizmu. Przebadano trzy rożne rodzaje ubiorów wykonanych z 100% bawełny, mieszanki 65/35 poliester/bawełna oraz 100% poliestru. Wytypowano 7 ochotników, którzy w przygotowanych ubiorach wykonywali zaprogramowane ćwiczenia a następnie poddano ich badaniom. Wyniki opracowano statystycznie i wykazano, że najkorzystniejsze właściwości posiada odzież wykonana ze 100% poliestru. Wynik ten można tłumaczyć lepszymi właściwościami transportu wilgoci wynikającymi z poziomu przepuszczalności pary wodnej i niższą przewodnością termiczną. Właściwości te wpływają na zachowanie się organizmu a zwłaszcza na sprawność układu krążeniowo-oddechowego, a tym samym wydolność organizmu. Wykazano korelację pomiędzy właściwościami ubioru a wydolnością organizmu za wyjątkiem korelacji pomiędzy grubością materiału a wydechowym cieśnieniem parcjalnym tlenu (PETO2) oraz przepuszczalnością powietrza i opornością cieplną.
Rocznik
Strony
82--88
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
autor
autor
autor
autor
autor
  • Saudi Arabia, King Abdulaziz University, Faculty of Computing and Information Technology, Department of Computer Science
Bibliografia
  • 1. Umbach KH. Optimization of the wear comfort by suitable fibre, yarn and textile construction, 40th International Man Made Fibres Congress 2001, Dornbirn, Austria.
  • 2. Umbach KH. ‘Measurement and evaluation of the physiological function of textiles and garments’, 1st Joint Conference ‘Visions of the Textile and Fashion Industry’, Seoul 2002, South Korea.
  • 3. Foster L. Sportswear 2000 – Interpreting fabric trends. World Sports Activewear 1998; 4(3): 21-24.
  • 4. Shishoo R. ‘Textiles in sport’ Published by Woodhead Publishing Limited 2005, pp. 177-202.
  • 5. Hilper C, Elsner P. Biofunctional Textiles and the Skin. Karger AG, Basel: Switzerland 2006; 51-66.
  • 6. Collier BJ, Epps HH. Textile Testing and Analysis. Upper Saddle River 1999, NJ: Prentice-Hall, Inc.
  • 7. Tortora PG, Collier BJ. Understanding Textiles (5th ed.). Upper Saddle River 1997, NJ: Prentice-Hall, Inc.
  • 8. Jeong YO, Tokura H, Zhang P. Is endurance performance of handrip exercise influenced by two different clothing ensembles? Appl Human Sci 1996; 15: 275-279.
  • 9. Ha M, Yamashita Y, Tokura H. Effect of Moisture Absorption by Clothing on Thermal Responses during Intermittent Exercise at 24°C, Eur. J. Appl. Physiol. 1995; 71: 266-271.
  • 10. Nielsen R, Endrusick TL. The Role of Textile Materials in Clothing on Thermoregulatory Responses to Intermittent Exercise, in “Trends in Ergonomics/human Factor VI” F. Aghazadeh, Ed., Elsevier Science, Amsterdam 1988, pp. 449-456.
  • 11. Tokura H, Natsume K. The Effects of Different Clothing on Human Thermoregulation at an Ambient Temperature of 34°C, in “Transactions of the Menzies Foundation” Vol. 14, Hales JRS, and Richards DAB, Eds., Menzies Foundation, Melbourne 1987, pp. 279-281.
  • 12. Zimniewska M, Laurentowska M, Bogacz E, Krysciak J, Domaszewska K, Zimniewska O. Influence of Sportswear Made from Polyester and Man-Made Cellulosic Fibres on the Energy Cost of Physical Effort. FIBRES & TEXTILES in Eastern Europe 2008; 16, 3(80): 94-99.
  • 13. Gonzalez-Alonso J, Teller C, Anderson SL, Jensen FB, Hyldig T, and Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999; 86: 1032-8.
  • 14. Lotens WA, Vandelinde FJG, Havenith G. Effects of condensation in clothing on heat transfer. Ergonomics 1995; 38(6): 1114–31.
  • 15. Spencer-Smith JL. The physical basis of clothing comfort, part 4: the passage of heat and water through damp clothing assemblies. Clothing Research Journal. 1977; 5: 116-28.
  • 16. Li Y, Zhu QY. A model of coupled liquid moisture and heat transfer in porous textiles with consideration of gravity. Numerical Heat Transfer. Part A, Applications 2003; 43(5): 501–23.
  • 17. Gibson PW, Charmchi M. Coupled heat and mass transfer through hygroscopic porous materials: application to clothing layers. Sen-I Gakkaishi 1997; 53(5):183-94.
  • 18. Fan J, Cheng X, Wen X, Sun W. An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results. International Journal of Heat and Mass Transfer 2004; 47(10–11): 2343-52.
  • 19. Heyward VH. Advanced Fitness Assessment and Exercise Prescription, Fifth Edition, 2006, Champaign, IL: Human Kinetics.
  • 20. The Cooper Institute for Aerobics Research, The Physical Fitness Specialist Manual. Dallas, TX. 200
  • 21. Zimniewska M, Laurentowska M, Bogacz E, Krysciak J, Domaszewska K, Zimniewska O. Influence of Sportswear Made from Polyester and Man-Made Cellulosic Fibres on the Energy Cost of Physical Effort. FIBRES & TEXTILES in Eastern Europe 2008; 16, 3(80): 94-99.
  • 22. Gavin TP. Clothing and thermoregulation during exercise. Sports Med 2003; 33(13): 941-7.
  • 23. Ha M, Tokura K, Yoden K. A comparison of skin temperatures and clothing miaoclimate during moderate intermittent exercise in the cold between one and two layers of cotton and polypropylene underwear. Int J Occup Saf Ergon 1998; 4: 347-62.
  • 24. Gavin TP, Babington JP, Harms CA, Ardelt ME, Tanner DA, Stager JM. Clothing fabric does not affect thermoregulation during exercise in moderate heat. Med Sci Sports Exerc 2001; 33(12): 2124-30.
  • 25. Nguyen MH, Tokura H. The different effects of black and white Vietnamese Aodai folk costumes on rectal temperature and heart rate in women walking intermittently in hot and sunny environment. Int J Occup Med Environ Health 2000; 13(1): 27-38.
  • 26. Hatch KL, Markee NK, Maibach HI. Skin response to fabric a review of studies and assessment methods. Clothing Textiles Res. J. 1992; 10(4): 54-63.
  • 27. Zimniewska M, Huber J, Krucinska I, Torlinska T, Kozlowski R. The influence of clothes made from natural and synthetic fibres on the activity of the motorunits in selected muscles in the forearm - Preliminary studies. Fibres and Textiles in Eastern Europe 2002; 39(4): 55-9.
  • 28. Davranche K, Audiffren M. Facilitating effects of exercise on information processing. J. Sports Sci. 2004; 22(5):419-28.
  • 29. Ciesielska I, Mokwinski M, Orlowska-Majdak M. Influence of Different Kind of Clothing Material on Selected Cardiovascular, Respiratory and Psychomotor Parameters during Moderate Physical Exercise. Int J Occup Med Environ Health 2009; 22(3): 215-226.
  • 30. Bringard A., Perrey S., Belluye N.; Aerobic energy cost and sensation responses during submaximal running exercise: Positive effects of wearing compression tights, International Journal of Sports Medicine 2006; 5: 373-378.
  • 31. Bernhardt and Anderson. Influence of Moderate Prophylactic Compression on Sport Performance. Journal of Strength and Conditioning Research 2005; 19 (2): 292-7.
  • 32. Hes L. An experimental analysis on thermal insulation and thermal contact properties of animal furs with biomimetic objectives, Fall annual Fibre Society Conference, October 2002, Natick, USA.
  • 33. ISO 11092, EN 31092, ‘Measurement of thermal and water-vapor resistance under steady-state conditions (sweating guarded-hotplate test)’ (1993).
  • 34. Frydrych I, Dziworska G, Bilska J. Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres, Fibres & Textiles in Eastern Europe 2002; 10, 4(39): 40-44.
  • 35. Hes L, Hanzl J, Dolezal I, Miklas Z. A new method and instrument for the objective evaluation of thermal contact properties of flat textile fabrics, Melliand Textilberichte 1990; 71: 679-681.
  • 36. Hes L, Dolezal I. New method and equipment for measuring the thermal properties of textiles, J. Textile Mash.Soc. Jpn. 1989; 42, 8: 124-128.
  • 37. Hes L. A new indirect method for fast evaluation of the surface moisture absorptivity of engineered garments, Internet, Conference on Engineered Textiles, 1998, Manchester UK, UMIST.
  • 38. Lubos Hes, Optimisation of shirt fabrics’ composition from the point of view of their appearance and thermal comfort, International Journal of Clothing Science and Technology 1999; 11: 105-119.
  • 39. Morton WE, Hearle JWS, Physical Properties of Textile Fibres, The Textile Institute.
  • 40. Hes L. Thermal Properties of Nonwovens, Proceedings of Congress Index 87, Geneva 1987.
  • 41. Pac MJ, Bueno MA, Renner M. Textile Res. J. 2001; 71(19): 806.
  • 42. Grayson M. Encyclopedia of Composite Materials and Components, John Wiley & Sons, 1983, USA.
  • 43. Hes L, Araujo M, Storova R. Thermal Comfort of Socks Containing PP Filaments, Textile Asia 1993; December: 57-59.
  • 44. Frydrych I, Dziworska G, Bilska J. Fibres & Textiles in Eastern Europe 2002; 10, 4(39): 40-44.
  • 45. Barker RL. From fabric hand to thermal comfort: the evolving role of objective measurements in explaining human comfort response to textiles. International Journal of Clothing Science and Technology 2002; 14(3/4): 181-200.
  • 46. Htch KL. Textile Science. New York 1993, West Publishing Company.
  • 47. Heyward VH, Advanced Fitness Assessment and Exercise Prescription, Fifth Edition, 2006, Champaign, IL: Human Kinetics.
  • 48. The Cooper Institute for Aerobics Research, The Physical Fitness Specialist Manual. Dallas 2005, TX, USA.
  • 49. Washington R, Bricker J, Alpert B et al.Guidelines for exercise testing in the paediatric age group. Circulation 1994;90: 2166-2179.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.