PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of the Acrylic Fibre Blend Ratio on Carpet Pile Yarn Compression Behaviour

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ proporcji przędz akrylowych o różnej masie liniowej w przędzy mieszankowej na zachowanie się dywanów przy ściskaniu
Języki publikacji
PL
Abstrakty
PL
Wytypowano do badań przędze nylonowe o masie liniowej 7.69 dtex, 10.99 dtex, 16.48 dtex, które łączono w różnych proporcjach dla wyprodukowania tkanin dywanowych. Zachowanie się dywanów przy ściskaniu badano przy stałym naprężeniu ściskającym 40.89 kPa, stosując aparat firmy Instron. Przy analizie ściskania uwzględniano: energię ściskania, energię dekompresji, odprężalność dywanów oraz względną ściśliwość. Wyniki analizowano statystycznie za pomocą programu ANOVA i testu Duncana. Określono parametry produkcji, dla których uzyskano najkorzystniejsze parametry ściskania.
EN
The aim of this research was to investigate the compression properties of acrylic cut-pile carpet consisting of pile yarn with different fibre blend ratios. Acrylic fibres with finenesses of 7.69, 10.99 and 16.48 dtex were selected and then blended at 10 different percentages of blend ratios using the semi-worsted spinning system, and finally 10 two-fold pile yarn samples were produced. In addition typical cut-pile carpet samples with a constant pile density level of 15 pile/cm2 and pile height of 13 mm were produced by the face to face method. Then the compression behaviour of the carpet samples was evaluated under a constant compression stress of 40.89 kPa using an Instron tensile tester. The cut-pile carpet compression properties were evaluated using different compression parameters including the energy of compression WC, the decompression energy W?ŚC, the resilience of carpet compression RC and relative compressibility EMC. The experimental results were then statistically analysed using ANOVA and Duncan test methods. The results showed that with an increase in the coarse acrylic fibre component ratio (16.48 dtex fibre) the yarn specific volume first decreases and then increases. The results of this research revealed that acrylic cut-pile carpet produced from pile yarn with 16.48, 10.99 and 7.69 denier fibre at a 15%, 67% and 18% blend ratio, respectively, exhibit the highest WC, W?ŚC, EMC and RC values compared with other samples and commercially produced yarn. The statistical regression analysis suggested that the compression behaviour of acrylic cut-pile carpet is extremely close to the two parameter model proposed for woven fabrics.
Rocznik
Strony
77--81
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
  • Iran, Tehran, Amirkabir University of Technology, Department of Textile Engineering
Bibliografia
  • 1. Carnaby GA. ”The Mechanics of Carpet Wear” Textile Res. J. 1981; 51: 514-519.
  • 2. Postle R, Carnaby GA, and de-Jong S. “The mechanics of wool structures”, John Wiley, New York, 1988.
  • 3. Laughlin KC, and Cusick GE. “Carpet Performance Evaluation, part II: StressStrain Behavior”, Textile Res. J 1968; 38(1): 72-80.
  • 4. Feather DG, and Settle GE. ”How good is a carpet in use?” Shirley Carpets Conference Published By Wool Industries Research Association, June, 1969.
  • 5. Vangheluwe L, and Kiekens P. “Resilience Properties of Polypropylene Carpets”,Textile Res. J. 1997; 67(9): 671-676.
  • 6. Onder E, and Berkalp OB. ”Effects of Different Structural Parameters on Carpet Physical Properties”, Textile Res. J. 2001; 71(6): 549-555.
  • 7. Koc E, Celik N, and Tekin M. “An Experimental Study on Thickness Loss of Wilton-Type Carpets Produced with Different Pile Materials after Prolonged Heavy Static Loading. Part-I: Characteristic Parameters and Carpet Behaviour”, Fibres & Textiles in Eastern Europe 2005; 13, 4(52): 56-62.
  • 8. Celik N, and Koc E. “An Experimental Study on Thickness Loss of Wilton Type Carpets Produced with Different Pile Materials after Prolonged Heavy Static Loading. Part 2: Energy Absorption and Hysteresis Effect”, Fibres & Textiles in Eastern Europe 2007; 15, 3(62): 87-92.
  • 9. Celik N, and Koc E. “Study on the Thickness Loss of Wilton-Type Carpets under Dynamic Loading”, Fibres & Textiles in Eastern Europe 2010; 18, 1(78), 54-59.
  • 10. Dubinskaite K, Van Langenhove L, and Milasius R. “Influence of Pile Height and Density on the End-Use Properties of Carpets”, Fibres & Textiles in Eastern Europe 2008; 16, 3(68): 47-50.
  • 11. Korkmaz Y, and Dalci Kocer S. “Resilience behaviors of woven acrylic carpets under short-and long-term static loading”, The Journal of the Textile Institute 2010; 101, 3: 236-241.
  • 12. Dayiary M, Shaikhzadeh Najar S, and Shamsi M. “A New Theoretical Approach to the Cut-Pile Carpet Compression Based on Elastic Stored Bending Energy”, The Journal of the Textile Institute 2009; 100, 8: 688-694.
  • 13. Dayiary M, Shaikhzadeh Najar S, and Shamsi M. “An experimental verification on cut-pile carpet compression behavior”, The Journal of the Textile Institute 2010; 101, 6: 488-494.
  • 14. Werner Klein, “The Rieter Manual of Spinning”, Volume 1 - Technology of Short - staple Spinning, Rieter Machine Works Ltd., 2008.
  • 15. Sheikhi H. M.Sc. Dissertation, Textile Engineering Dept, Amirkabir Univ. of Tech. (AUT), Tehran, Iran, 2008.
  • 16. Shirley Development Ltd, the Catalogue, Catalogue No. 8, England, 2005.
  • 17. ASTM Standards: D1777-96 Standard Test Method for Thickness of Textile Materials.
  • 18. de Jong S, Snaith JW, and Michie NA. “A Mechanical Model for the Lateral Compression of Woven Fabrics”, Textile Res. J. 1986; 56: 759.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.