PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Wrinkle Recovery of Flax Fabrics with Embedded Superelastic Shape Memory Alloys Wires

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Odprężenie pofałdowań tkanin lnianych z wprowadzonymi superelastycznymi drutami posiadającymi pamięć kształtu
Języki publikacji
EN
Abstrakty
EN
The present study explores the possibility of using superelastic Shape Memory Alloy (SMA) wires to improve the wrinkle recovery of flax fabrics that exhibit very poor recovery from creasing. Three types of hybrid yarns (H1- H3) were developed consisting of a SMA wire (Ni-Ti alloy) as the core, with a textile shield around it. Hybrid fabrics (HF1 - HF3) were developed by embedding the hybrid yarns in both the warp and weft directions of a fabric, to bring about all-direction recovery from creasing. The wrinkle recovery angles (WRAs) of the hybrid fabrics were assessed in both dry (RH 65%) and wet (RH 90%) conditions, and they were compared with those of reference flax fabrics (RF) and forth hybrid fabric (HF0) with Ni-Ti SMA wires embedded. The results showed a significant increase in the Wrikle Recover Angle (WRA) for all hybrid fabrics, from about 40 to approximately 120 degrees. Statistically significant differences were noticed between the WRA of hybrid fabrics HF2 and HF3 in dry conditions, as well as a significant variation in the WRA with humidity for hybrid fabric HF2. In addition, the bending properties of the four hybrid fabrics were assessed, but no significant correlation was found between these properties and the WRA of the hybrid fabrics.
PL
Zbadano możliwość zastosowania superelastycznych stopów z pamięcią kształtu dla poprawy odprężalności pofałdowań tkanin lnianych. Wykorzystano trzy rodzaje hybrydowych przędz z rdzeniem metalowym i oplotem włóknistym. Otrzymane przędze hybrydowe wprowadzano do tkaniny zarówno w kierunku osnowy jak i wątku. Odprężalność pofałdowań badano w stanie suchym i mokrym oraz porównano z odprężalnością tkanin czysto lnianych. Stwierdzono wyraźną poprawę dla tkanin z użyciem wszystkich włókien hybrydowych. Istotnie statystyczne różnice stwierdzono pomiędzy tkaninami, w których zastosowano poszczególne rodzaje przędz hybrydowych. Dodatkowo zbadano właściwości tkanin przy zginaniu, ale nie wykazano istotnych korelacji pomiędzy nimi a odprężalnością pofałdowań.
Rocznik
Strony
56--61
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Belgium, Gent, Ghent University, Department of Textiles
Bibliografia
  • 1. Can Y, Akaydin M, Turhan Y, Ay E. Effectof wrinkle resistance finish on cottonfabric properties. Indian Journal of Fibre& Textile Research 2009; 34 June :183-186.
  • 2. Behera BK, Hari PK. Creasing in woven fabrics . In: Woven textile structure,Woodehead Publishing ISBN 978-1-84569-514-9, 2010, p. 197.
  • 3. Savilla BP. Physical Testing of Textiles.The textile Institute& Woodhead Publishing Limited Cambridge, 2003.
  • 4. Xiaoxia Liu, Jinlian Hu, Murugesh Babu K, Shanyuan Wang. Elasticity and Shape Memory Effect of Shape Memory Fabrics. Textile Research Journal 2008; December 78: 1048-1056.
  • 5. Sarvani V, Balakrishnaiah B. Wrinklerecovery treatment to khadi & handloom fabrics. The Indian textile Journal, April 2007. http://www.indiantextilejournal.com/articles/FAdetails.asp?id=144 (accessed June 2011)
  • 6. USA 07141077. Hydrophobically modified polyethylenimines and polyvinylamines for wrinkle-resistant finishing of textiles containing cellulose.
  • 7. Yunkei, L., Evaluation of shape memory fabrics, MS Thesis, Hong Kong Polytechnic University, Composite, Chapter 10 edited by Jinsong Leng, Shanyi, Du, CRC Press, 2010.
  • 8. Yuen Kei S. Evaluation of Shape Memory Fabrics. Master thesis, Hong Kong Polytechnic University, Institute of textiles and clothing, Institute of Textiles and Clothing, 2006.
  • 9. Hu J Leng. Shape-Memory Polymer in textile, in Shape Memory Polymers andMultifunctional Composites. Ed. by JinsongLeng and Shanyi DU, CRC Press2010.
  • 10. Rahman MA. Patents on superelasticshape memory alloy, Recent Patents onMecahnical Engineering 2008, 65-67,2008 Bentham Science Publishers Ltd.
  • 11. http://www.memry.com/ (accessed July2011).
  • 12. Lomov SV et al. Finite element modeling of SMA textiles: superelastic behavior.The Journal of the Textile Institute 2011;102; 3 march: 232-247.
  • 13. http://www.gzespace.com/gzenew/index. php?pg=oricalco&lang=en (accessedApril 2009).
  • 14. EU project AVALON, on http://avalon.ditf-denkendorf.de/ (accessed April2009).
  • 15. EU project Loose&Tight, on http://www.dappolonia-research.com/loose&tight/(accessed on the 2nd of November 2010).
  • 16. Carosio S, Monero A. Smart and hybrid materials: perspectives for their use in textile structures for better health care, Wearable eHealth Systems for Personalized Health Management. Studies in Health Technology and Informatics vol. 108, pp. 335-344, IOS Press.
  • 17. Stylios GK. Engineering textile and clothing aesthetics using shape changing materials, part II in Intelligent textiles and clothing, edited by H Mattila, TampereUniversity of Technology, Finland,Woodhead Textiles Series No. 54.
  • 18. www.marielleleenders.nl. (accessed 1st of November 2010).
  • 19. Boussu F, Bailleul G, Petitniot JL, Vinchon H. Development of shape memory alloy fabrics for composite structures. AUTEX Res J. 2002; 1: 1-7.
  • 20. Yvonne YF, Chan Vili. Investigating Smart Textiles Based on Shape Memory Materials. Textile Research Journal 2007; 77; 290.
  • 21. Vasile S, Grabowska KE, Ciesielska IL, Githaiga J. Analysis of Hybrid Woven Fabrics with Shape Memory Alloys Wires Embedded. FIBRES & TEXTILES in Eastern Europe 2010; 18, 1(78): 64-69.
  • 22. Vasile S, Ciesielska IL, Githaiga J. Comparative Analysis of Mechanical Properties of Hybrid Yarns with Superelastic Shape Memory Alloys (SMA) Wires Embedded. FIBRES & TEXTILES in Eastern Europe 2011; 19; 6 (89): 41-46.
  • 23. Cell D Software by Olympus ImagingSoftware for Lufe Science Microscopy,booklet.
  • 24. ISO 7211-2:1984 Textiles -- Woven fabrics-- Construction -- Methods of analysis -- Part 2: Determination of number of threads per unit length.
  • 25. ISO 7211-3:1984 Textiles - Woven fabrics - Construction - Methods of analysis - Part 3: Determination of crimp of yarn in fabric.
  • 26. ISO 3801:1977 Textiles - Woven fabrics - Determination of mass per unit length and mass per unit area.
  • 27. ISO 5084:1996 Textiles - Determination of thickness of textiles and textile products.
  • 28. Behera BK, Guruprasad R. Development of intelligent models to predict bending propertiey of woven fabrics. In: AUTEX 2011 conference. 8-10th June 2011, Mulhouse, France.
  • 29. ASTM D1388 – 08. Standard Test Method for Stiffness of Fabrics.
  • 30. AATCC 66-1984. Wrinkle recovery of fabrics- Recovery Angle Method.
  • 31. ISO 2062:1993. Textiles - Yarns from packages - Determination of single-end breaking force and elongation at break.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.