PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of critical stress triaxiality along yield locus of isotropic ductile materials under plane strain condition

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is widely accepted that failure due to plastic deformation in metals greatly depends on the stress triaxiality factor (TF). This article investigates the variation of stress triaxiality along the yield locus of ductile materials. Von Mises yield criteria and triaxiality factor have been used to determine the critical limits of stress triaxiality for the materials under plane strain condition. A generalized mathematical model for triaxiality factor has been formulated and a constrained optimization has been carried out using genetic algorithm. Finite element analysis of a two dimensional square plate has been carried out to verify the results obtained by the mathematical model. It is found that the set of values of the first and the second principal stresses on the yield locus, which results in maximum stress triaxiality, can be used to determine the location at which crack initiation may occur. Thus, the results indicate that while designing a certain component, such combination of stresses which leads the stress triaxiality to its critical value, should be avoided.
Wydawca
Rocznik
Strony
197--203
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
  • Dept. of Industrial and Production Eng., Dr. B R Ambedkar National Institute of Technology, Jalandhar, India
Bibliografia
  • [1] HENRY B. S., LUXMOORE A. R., Engineering Fracture Mechanics, 57 (1997), 375.
  • [2] ZHANG Y., CHEN Z., International Journal of Fracture,143 (2007), 105.
  • [3] BORONA N., GENTILE D., PIRONDI A., NEWAS G.,International Journal of Plasticity, 21 (2005), 981.
  • [4] IMANAKA M., FUJINAMI A., SUZUKI Y., Journal of Materials Science, 35 (2000), 2481.
  • [5] TRATTNIG G., ANTRETTER T., PIPPAN R.,Engineering Fracture Mechanics, 75 (2008), 223.
  • [6] MIRONE G., Engineering Fracture Mechanics, 72 (2005), 1049.
  • [7] NICOLAOU P.D., SEMIATIN S.L., Journal of Materials Science, 36 (2001), 5155.
  • [8] BAO Y., Engineering Fracture Mechanics, 72 (2005),502.
  • [9] BACHA DANIEL D., Journal of Materials Processing and Technology, 203 (2008), 480.Determination of critical stress triaxiality along yield locus of isotropic ductile materials under plane strain condition 203
  • [10] MEDIAVILLA J., PEERLINGS R.H.J., GEERS M.G.D.,Computer Methods in Applied Mechanics and Engineering, 195 (2006) 4617.
  • [11] BORVIK T., HOPPERSTAD O.S., BERSTED T.,European Journal of Mechanics A/Solids, 22 (2003),15.
  • [12] KIM J., GAO X., SRIVATSAN T.S., EngineeringFracture Mechanics, 71 (2004), 379.
  • [13] PARDOEN T., Computers and Structures, 84 (2006),1641.
  • [14] DEB K., Optimization for Engineering DesignAlgorithms and Examples, Prentice Hall, New Delhi,1993
  • [15] KONG X.M., SCHLUTER N., DAHL W., Engineering Fracture Mechanics, 52 (1995), 379.
  • [16] BHADAURIA S.S., HORA M.S., PATHAK K.K.,Journal of Solid Mechanics, 1 (2009), 226.
  • [17] CHAWLA K.K., MEYERS M.A., Mechanical Behavior of Materials, Prentice Hall, 1998.
  • [18] KUMAR P., Elements of Fracture Mechanics, Wheeler Publishing Company, New Delhi, 1999.
  • [19] KREYSGIZ E., Advanced Engineering Mathematics,Wiley, 2008.
  • [20] MEGUID S.A., Engineering Fracture mechanics,Elsevier Applied Science, USA, 1983.
  • [21] SRINATH L.S., Advanced Mechanics of Solids, Tata Mc.Graw Hill, India, 2003
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.