PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From molecular spectroscopy to entanglement of atoms - a trek with supersonic velocity

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
The supersonic free-jet expansion technique is being used in different fields of research in physics, and physical chemistry to study vibrational and rotational molecular structures in ground and excited electronic energy states. The supersonic beam technique exploits a source of monokinetic, rotationally and vibrationally cold van der Waals (vdW) molecules that are very weakly bound in their ground electronic states. In this article we review experiments at the Jagiellonian University in Kraków (Poland) in which the supersonic free-jet beam serves as a source of ground-state vdW molecules in studies of neutral-neutral interactions between 12-group metal (Me = Zn, Cd, Hg) and 18-group noble gas (Ng = He, Ne, Ar, Kr, Xe) atoms. The experiments lead to determination of spectroscopical characteristics and interatomic potentials of MeNg and Me2 molecules, allowing determination of distinct trends in the Me-Ng and Me-Me interactions in different regions of internuclear separation. The determined interatomic potentials are also used in designing mechanisms of internal vibrational cooling of molecules photoassociated in magneto-optical traps. Recently, versatility of supersonic beams is confirmed in quantum information where the technique is planned to be used to create pairs of entangled atoms in experiments dedicated for testing of Bell's inequality for atoms. A purpose of the experiment - which is in a preparational stage in our laboratory - is to create pairs of entangled cadmium atoms with regard to their nuclear spin orientations. It is planned to be achieved in supersonic molecular beams of cadmium dimers using two dye-laser pulses and stimulated Raman process leading to a controlled photodissociation of the molecule.
Czasopismo
Rocznik
Strony
417--431
Opis fizyczny
Bibliogr. 66 poz.
Twórcy
autor
  • Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Bibliografia
  • [1] VAN DER WAALS J.D., The equation of state for gases and liquids, [In] Nobel Lectures, Physics 1901–1921, Elsevier Publishing Company, Amsterdam, 1967, pp. 254–265; MARGENAU H., Van der Waals forces, Reviews of Modern Physics 11(1), 1939, pp. 1–35, and references therein.
  • [2] GEIM A.K., DUBONOS S.V., GRIGORIEVA I.V., NOVOSELOV K.S., ZHUKOV A.A., SHAPOVAL S.YU., Microfabricated adhesive mimicking gecko foot-hair, Nature Materials 2(7), 2003, pp. 461–463.
  • [3] HENSEL F., The liquid–vapour phase transition in fluid metals, Philosophical Transactions of the Royal Society of London A 356(1735), 1998, pp. 97–117, and references therein.
  • [4] MORSE M.D., Clusters of transition-metal atoms, Chemical Reviews 86(6), 1986, pp. 1049–1109, and references therein.
  • [5] HUBER K.P., HERZBERG G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, D. Van Nostrand, New York, 1979.
  • [6] BUCKINGHAM A.D., FOWLER P.W., HUTSON J.M., Theoretical studies of van der Waals molecules and intermolecular forces, Chemical Reviews 88(6), 1988, pp. 963–988.
  • [7] LONDON F., Zur Theorie und Systematik der Molekularkräfte, Zeitschrift für Physik 63, 1930, pp. 245–279.
  • [8] STONE A.J., The Theory of Intermolecular Forces, Clarendon, Oxford, 1996.
  • [9] SLATER J.C., KIRKWOOD J.G., The van der Waals forces in gases, Physical Review 37(6), 1931, pp. 682–697.
  • [10] KRAMER H.L., HERSCHBACH D.R., Combination rules for van der Waals force constants, Journal of Chemical Physics 53(7), 1970, pp. 2792–2800.
  • [11] LIUTI G., PIRANI F., Regularities in van der Waals forces: correlation between the potential parameters and polarizability, Chemical Physics Letters 122(3), 1985, pp. 245–250.
  • [12] LI P., REN J., NIU N., TANG K.T., Corresponding states principle for the alkaline earth dimers and the van der Waals potential of Ba2, Journal of Physical Chemistry A 115(25), 2011, pp. 6927–6935.
  • [13] MARTENCHARD-BARRA S., JOUVET C., LARDEUX-DEDONDER C., SOLGADI D., Solvation of Hg( 3P1 ) in the HgArn clusters through resonant enhanced multiphoton ionization: Evidence for nonadditive effects in the excited state potentials, Journal of Chemical Physics 98(7), 1993, pp. 5281–5289.
  • [14] BRÉCHIGNAC C., BROYER M., CAHUZAC P.H., DELACRETAZ G., LABASTIE P., WÖSTE L., Size dependence of inner-shell autoionization lines in mercury clusters, Chemical Physics Letters 120(6), 1985, pp. 559–563.
  • [15] LANG B., VIERHEILIG A., WIEDENMANN E., BUCHENAU H., GERBER G., Multiple ionization and Coulomb explosion of mercury clusters in femtosecond laser fields, Zeitschrift für Physik D 40(1–4), 1997, pp. 1–4.
  • [16] MILLER J.C., ANDREWS L., Absorption and laser-excited fluorescence spectra of matrix-isolated metal van der Waals dimers, Applied Spectroscopy Reviews 16(1), 1980, pp. 1–42, and references therein.
  • [17] RHODES C.K. [Ed.], Excimer Lasers, 2nd Ed., Springer-Verlag, 1984, and references therein.
  • [18] LETT P.D., JULIENNE P.S., PHILLIPS W.D., Photoassociative spectroscopy of laser-cooled atoms, Annual Reviews of Physical Chemistry 46, 1995, pp. 423–452.
  • [19] ESQUIVEL R.O., FLORES-GALLEGOS N., MOLINA-ESPÍRITU M., PLASTINO A.R., ANGULO J.C., ANTOLÍN J., DEHESA J.S., Quantum entanglement and the dissociation process of diatomic molecules, Journal of Physics B: Atomic, Molecular and Optical Physics 44(17), 2011, article 175101.
  • [20] CHELKOWSKI S., BANDRAUK A.D., Visualizing electron delocalization, electron–proton correlations, and the Eistein–Podolski–Rosen paradox during the photodissociation of a diatomic molecule using two ultrashort laser pulses, Physical Review A 81(6), 2010, article 062101.
  • [21] KOPERSKI J., FRY E.S., Molecules in the cold environment of a supersonic free-jet beam: from spectroscopy of neutral–neutral interactions to a test of Bell’s inequality, Journal of Physics B: Atomic, Molecular and Optical Physics 39(19), 2006, pp. S1125–S1150.
  • [22] COMPARAT D., DRAG C., LABURTHE TOLRA B., FIORETTI A., PILLET P., CRUBELLIER A., DULIEU O., MASNOU-SEEUWS F., Formation of cold Cs2 ground state molecules through photoassociation in the 1u pure long-range state, The European Physical Journal D 11(1), 2000, pp. 59–71.
  • [23] ALMAZOR M.-L., DULIEU O., MASNOU-SEEUWS F., BEUC R., PICHLER G., Formation of ultracold molecules via photoassociation with blue detuned laser light, The European Physical Journal D 15(3), 2001, pp. 355–363.
  • [24] MAITLAND G.C., RIGBY M., SMITH E.B., WAKCHEM W.A., Intermolecular Forces, Clarendon, Oxford, 1987.
  • [25] KOPERSKI J., Van der Waals Complexes in Supersonic Beams, Wiley-VCH, Weinheim, 2003.
  • [26] KOPERSKI J., Study of diatomic van der Waals complexes in supersonic beams, Physics Reports 369(3), 2002, pp. 177–326, and references therein.
  • [27] ŁUKOMSKI M., KOPERSKI J., CZUCHAJ E., CZAJKOWSKI M., Structure of excitation and fluorescence spectra recorded at the 10u+(51P)–X10g+ transition of Cd2 , Physical Review A 68(4), 2003,article 042508; Erratum, Physical Review A 69(4), 2004, 049901.
  • [28] RUSZCZAK M., STROJECKI M., KOPERSKI J., Short-range repulsion in the D10+( 1Σ +)-state potential of the CdRG (RG = Ar,Kr) molecules determined from direct continuum←bound excitation detected at the D10+←X10+( 1Σ +) transition, Chemical Physics Letters 416(1–3), 2005, pp. 147–151.
  • [29] STROJECKI M., RUSZCZAK M., KROŚNICKI M., ŁUKOMSKI M., KOPERSKI J., The 30+u(4 3P1 )- and X0+g -state potential of Zn2 obtained from excitation spectrum recorded at the 30+u ← X10+g transition, Chemical Physics 327(2–3), 2006, pp. 229–236.
  • [30] ŁUKOMSKI M., STROJECKI M., RUSZCZAK M., KOPERSKI J., Rotational structure of the ν ' = 45←ν '' =0band of the 10u+(5 1P1 )←X10g+ transition in 228Cd2: direct determination of the ground- and excited-state bond lengths, Chemical Physics Letters 434(4–6), 2007, pp. 171–175; Erratum,Chemical Physics Letters 436, 2007, p. 400.
  • [31] KOPERSKI J., RUSZCZAK M., STROJECKI M., ŁUKOMSKI M., Spectroscopy of the 11u(51P1 ) and 10u+(51P1 ) singlet electronic states of cadmium dimer: bond lengths and verification of ab initio potentials, Journal of Molecular Spectroscopy 243(2), 2007, pp. 134–141.
  • [32] KOPERSKI J., Group-12 vdW dimers in free-jet supersonic beams: the legacy of Eugeniusz Czuchaj continues, The European Physical Journal – Special Topics 144(1), 2007, pp. 107–114.
  • [33] STROJECKI M., RUSZCZAK M., ŁUKOMSKI M., KOPERSKI J., Is Cd2 truly a van der Waals molecule? Analysis of rotational profiles recorded at the A0u+, B1u←X0g+ transitions, Chemical Physics 340(1–3), 2007, pp. 171–180.
  • [34] STROJECKI M., KROŚNICKI M., KOPERSKI J., Short-range repulsion in the D1Σ0+-state potential ofthe ZnRg (Rg = Ne, Ar, Kr) complexes determined from direct free←bound excitation at the D 1Σ0+←X1Σ0+ transition, Chemical Physics Letters 465(1–3), 2008, pp. 25–30.
  • [35] RUSZCZAK M., STROJECKI M., ŁUKOMSKI M., KOPERSKI J., Potential energy curves for the B 11u state and short-range part of the X 10g+ state of Cd2 determined from excitation and dispersed fluorescence spectra recorded using the B 11u↔ X 10g+ transition, Journal of Physics B: Atomic,Molecular and Optical Physics 41(24), 2008, article 245101.
  • [36] STROJECKI M., KROŚNICKI M., ŁUKOMSKI M., KOPERSKI J., Excitation spectra of CdRg (Rg = He,Ne, Xe) complexes recorded at the D 1Σ0+←X1Σ0+ transition: from the heaviest CdXe to the lightest CdHe, Chemical Physics Letters 471(1–3), 2009, pp. 29–35.
  • [37] STROJECKI M., KROŚNICKI M., KOPERSKI J., Repulsive and bound parts of the interatomic potentials of the lowest singlet electronic energy states of the MeRg complexes (Me = Zn, Cd; Rg = He, Ne,Ar, Kr, Xe), Journal of Molecular Spectroscopy 256(1), 2009, pp. 128–134.
  • [38] STROJECKI M., KOPERSKI J., LIF dispersed emission spectra and characterization of ZnRg (Rg = Ne,Ar, Kr) ground-state potentials, Chemical Physics Letters 479(4–6), 2009, pp. 189–194.
  • [39] STROJECKI M., KROŚNICKI M., ZGODA P., KOPERSKI J., Characterization of bound parts of the b30u+(53P1 ), c31u(53P2 ) and X 10g+ states of Cd2 revisited: bound–bound excitation and dispersed emission spectra, Chemical Physics Letters 489(1–3), 2010, pp. 20–24.
  • [40] URBAŃCZYK T., STROJECKI M., KOPERSKI J., Structure of vibrational bands of the E3Σ +(63S1 )←←A3Π +0(53P1 ), B3Σ +1(53P1 ) transitions in CdAr and CdKr studied by optical–optical double resonance method, Chemical Physics Letters 503(1–3), 2011, pp. 18–24.
  • [41] KOPERSKI J., STROJECKI M., KROŚNICKI M., URBAŃCZYK T., Potentials of the D10u +(6 1S0 ) and F31u(63P2) electronic Rydberg states of Cd2 from ab initio calculations and laser-induced fluorescence excitation spectra, Journal of Physical Chemistry A 115(25), 2011, pp. 6851–6860.
  • [42] RUSZCZAK M., STROJECKI M., KROŚNICKI M., ŁUKOMSKI M., KOPERSKI J., Spectroscopy of Cd2 and Zn2 molecules in free-jet supersonic beams: Experimental and theoretical studies, Optica Applicata 36(4), 2006, pp. 451–459.
  • [43] MING YU, DOLG M., Covalent contributions to bonding in group 12 dimers M2 (Mn = Zn, Cd, Hg),Chemical Physics Letters 273(5–6), 1997, pp. 329–336.
  • [44] MASNOU-SEEUWS F., PILLET P., Formation of ultracold molecules (T ≤ 200 μK) via photoassociation in a gas of laser-cooled atoms, Advances in Atomic, Molecular, and Optical Physics 47,2001, pp. 53–127.
  • [45] SMALLEY R.E., WHARTON L., LEVY D.H., Molecular optical spectroscopy with supersonic beams and jets, Accounts of Chemical Research 10(4), 1977, pp. 139–145.
  • [46] LUBMAN D.M., RETTNER C.T., ZARE R.N., How isolated are molecules in a molecular beam?, Journal of Physical Chemistry 86(7), 1982, pp. 1129–1135.
  • [47] URBAŃCZYK T., STROJECKI M., KROŚNICKI M., KOPERSKI J., Entangled atoms of cadmium: from production to tests of Bell’s inequality, Proceedings of the XLI Meeting of Polish Physicists, September 4–9, 2011, Lublin, Poland, p. 222.
  • [48] STROJECKI M., Rotational Spectra Simulator, v. 1.6, 2007.
  • [49] LUKEŠ V., ILČIN M., LAURINC V., BISKUPIČ S., On the structure and physical origin of van der Waals interaction in zinc, cadmium and mercury dimers, Chemical Physics Letters 424(1–3), 2006,pp. 199–203.
  • [50] LEROY R.J., KRAEMER G.T., BCONT 2.2, University of Waterloo Chemical Physics Research Report CP-650R2, 2004. The source code: http://leroy. uwaterloo.ca.
  • [51] KOPERSKI J., QU X., MENG H., KENEFICK R., FRY E.S., Rotational analysis of the (57, 0) band ofthe D1u← X0+g triplet–singlet transition in Hg2 produced in a free-jet expansion beam,Chemical Physics 348(1–3), 2008, pp. 103–112.
  • [52] TELLINGHUISEN J., [In] Photodissociation and Photoionization, Lawley K.P. [Ed.], Wiley and Sons,1985, p. 299.
  • [53] ŁUKOMSKI M., KOPERSKI J., CZAJKOWSKI M., Double-well potential energy curve of cadmium–krypton molecule in the B1(53P1 ) excited state, Spectrochimica Acta A 58(8), 2002, pp. 1757–1767.
  • [54] KOPERSKI J., CZAJKOWSKI M., Spectroscopical characterization of CdNe van der Waals complex in the E1( 3Σ +) Rydberg state, Chemical Physics Letters 357(1–2), 2002, pp. 119–125.
  • [55] KOPERSKI J., CZAJKOWSKI M., The structure of the lowest electronic Rydberg state of CdAr complex determined by laser double resonance method in a supersonic jet-expansion beam, Spectrochimica Acta A 59(11), 2003, pp. 2435–2448.
  • [56] KOPERSKI J., CZAJKOWSKI M., Electronic structure of the CdKr lowest Rydberg state determined from laser-excitation spectra using supersonic beam and double optical resonance methods, Physical Review A 69(4), 2004, article 042509.
  • [57] KOSMAN W.M., HINZE J., Inverse perturbation analysis: Improving the accuracy of potential energy curves, Journal of Molecular Spectroscopy 56(1), 1975, pp. 93–103.
  • [58] SCHAUTZ F., FLAD H.-J., DOLG M., Quantum Monte Carlo study of Be2 and group 12 dimers M2 (M = Zn, Cd, Hg), Theoretical Chemistry Accounts 99(4), 1998, pp. 231–240.
  • [59] DOLG M., FLAD H.-J., Ground state properties of Hg2. 1. A pseudopotential configuration interaction study, Journal of Physical Chemistry 100(15), 1996, pp. 6147–6151.
  • [60] KOPERSKI J., ATKINSON J.B., KRAUSE L., The 0u+(63P1 )–X0g+ spectrum of Hg2 excited in a supersonic jet, Chemical Physics Letters 219(3–4), 1994, pp. 161–168.
  • [61] WALTHER TH., Interactions in Ultracold Gases: From Atoms to Molecules, Weidemüller M.,Zimmermann C., [Eds.], Wiley-VCH, Weinheim, 2003, pp. 405–406.
  • [62] FRY E.S., WALTHER T., SHIFANG LI, Proposal for a loophole-free test of the Bell inequalities,Physical Review A 52(6), 1995, pp. 4381–4395.
  • [63] URBAŃCZYK T., STROJECKI M., KROŚNICKI M., KOPERSKI J., Entangled cadmium atoms – from the method of production to the test of Bell inequalities, Optica Applicata 42(2), 2012, pp. 433–441.
  • [64] AUTUMN K., YICHING A. LIANG, HSIEH S.T., ZESCH W., WAI PANG CHAN, KENNY T.W., FEARING R.,FULL R.J., Adhesive force of a single gecko foot-hair, Nature 405(6787), 2000, pp. 681–685.
  • [65] MURPHY M.P., SITTI M., Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives, IEEE/ASME Transactions on Mechatronics 12(3), 2007, pp. 330–338.
  • [66] MURPHY M.P., KUTE C., MENGÜÇ Y., SITTI M., Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives, The International Journal of Robotics
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.