PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Load dependence of hardness of the doped soda-lime silicate glasses

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
The aim of the work described was to study the load dependence of micro- and nano-hardness for soda-lime silicate glass doped with some univalent cations. The Fourcault-type glass samples were chemically treated by dipping them in melted baths of KNO3, AgNO3 and CuCl. The nano- and micro-hardness were determined by using the Vickers diamond indenters for applied loads ranging between 0.1 and 500 mN (registered loading and unloading mode), and between 0.2 and 30 N (conventional application of the load), respectively. For the behavior of hardness and Young's modulus (registered nano-indentation) the normal indentation size effect has been observed, but in the low load range of conventionally indented specimens the reverse indentation size effect has been found. The detected size effects were discussed in terms of some empirical models proposed in the literature for crystalline materials. It has been shown that: 1) the Meyer's law is only suitable for describing the nano-indentation characteristics measured in a narrow range of indentation load; 2) the classical Meyer's law and the energy balance model are insufficient for describing the reverse indentation size effect; 3) the difficulties in acquiring accurate and precise micro-hardness readings in the range of low loads can result in the inconformity of experimental data with the empirical models.
Czasopismo
Rocznik
Strony
399--406
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-950 Wrocław, Poland
Bibliografia
  • [1] KREIBIG U., VOLLMER M., Optical Properties of Metal Clusters, Springer, Berlin, 1995.
  • [2] KÖLEMEN U., Analysis of ISE in microhardness measurements of bulk MgB2 superconductorss using different models, Journal of Alloys and Compounds 425(1–2), 2006, pp. 429–435.
  • [3] SARGENT P.M., Indentation size effect and strain hardening, Journal of Materials Science Letters 8(10), 1989, pp. 1139–1140.
  • [4] SANGWAL K., On the reverse indentation size effect and microhardness measurement of solids, Materials Chemistry and Physics 63(2), 2000, pp. 145–152.
  • [5] SANGWAL K., Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids – some basic concepts and trends, Crystal Research and Technology 44(10), 2009, pp. 1019–1037.
  • [6] LI H., BRADT R.C., The microhardness indentation load/size effect in rutile and cassiterite single crystals, Journal of Materials Science 28(4), 1993, pp. 917–926.
  • [7] PORAI-KOSHITS E.A., AVERJANOV V.I., Primary and secondary phase separation of sodium silicate glasses, Journal of Non-Crystalline Solids 1(1), 1968, pp. 29–38.
  • [8] KRAJCZYK L.,SUSZYNSKA M., The microstructure of soda-lime silicate glasses detected by electron microscopy, Radiation Effects and Defects in Solids 158(1–6), 2003, pp. 399–402.
  • [9] SUSZYNSKA M.,SZMIDA M., GRAU P., Mechanical characteristics of mixed soda-lime silicate glasses, Materials Science and Engineering: A 319–321, 2001, pp. 702–705.
  • [10] SUSZYNSKA M., KRAJCZYK L., SZMIDA M., Preparation, microstructure and properties of soda-lime silicate glasses doped with nanosized silver particles, Wiadomosci Chemiczne, Biblioteka, 2004, pp. 235–261.
  • [11] MOTT B.W., Microindentation Hardness Testing, Butterworths-Scientific Publication, London, 1956.
  • [12] OLIVER W.C., PHARR G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7(6), 1992, pp. 1564–1583.
  • [13] BABINI G.N., BELLOSI A., GALASSI C., Characterization of hot-pressed silicon nitride-based materials by microhardness measurements, Journal of Materials Science 22(5), 1987, pp. 1687–1693.
  • [14] ONITSCH E.M., The present status of testing the hardness of materials, Mikroskopie 95, 1956, pp. 12–14.
  • [15] BUECKLE H., Mikrohaertepruefung und ihre Anweendung, Berliner Union Verlag, Stuttgart, 1965.
  • [16] SUSZYNSKA M., GRAU P., FRAENZEL W., MEINHARD H., MOSCH S., Hardness-anomalies for precipitation-strengthened NaCl:Ca crystals, Materials Science Forum 239–241, 1997, pp. 429–434.
  • [17] FRÖHLICH F., GRAU P., GRELLMANN W., Performance and analysis of recording microhardness test, Physica Status Solidi (a) 42(1), 1977, pp. 79–89.
  • [18] JIANGHONG GONG, JIANJUN WU, ZHENDUO GUAN, Examination of the indentation size effect in low-load Vickers hardness testing of ceramics, Journal of the European Ceramic Society 19(15), 1999, pp. 2625–2631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0023-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.