PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prototypes of Carbon Nanotube-Based Textile Sensors Manufactured by the Screen Printing Method

Identyfikatory
Warianty tytułu
PL
Prototypy sensorów tekstylnych otrzymanych metodą druku filmowego
Języki publikacji
EN
Abstrakty
EN
In the present work the authors made textile sensors by the screen printing method with the use of carbon nanotubes. The sensors obtained are intended for monitoring dangers in direct contact with the body. For this reason the modification of carbon nanotube dispersion, with the commercial name AquaCyl from the Nanocyl company, was performed in order to give the textiles, apart from increased electric conductivity, bacteriostatic properties, which are extremely important in the case of biomaterials. Assessment of the efficiency of the sensors both for mechanical stimuli and the action of Gram-positive and Gram-negative bacteria was performed.
PL
W prezentowanej pracy autorzy wykonali sensory tekstylne metodą druku filmowego z zastosowaniem nanorurek węglowych. Otrzymane sensory mają służyć do monitorowania zagrożeń w bezpośrednim kontakcie z ciałem. W tym celu została przeprowadzona modyfikacja dyspersji nanorurek węglowych o nazwie handlowej AquaCyl firmy Nanocyl dla nadania tekstyliom obok zwiększonego przewodnictwa elektrycznego również właściwości bakteriostatycznych, niezwykle istotnych w przypadku biomateriałów. Przeprowadzona została ocena skuteczności czujników zarówno na bodźce mechaniczne, jak również na oddziaływanie bakterii Gram-dodatnich i Gram-ujemnych.
Rocznik
Strony
79--83
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • Poland, Łódź, Technical University of Lodz, Faculty of Material Technologies and Textile Design, Department of Material and Commodity Sciencs and Textile Metrology
Bibliografia
  • 1. Tang, S. L. P. Recent developments in fexible wearable electronics for monitoring applications, Transactions of the Institute of Measurement and Control, 2007, 29, 283-300.
  • 2. Marculescu, D.; Marculescu, R.; Zamora, N. H.; Stanley-Marbell, P.; Khosla, P. K.; Park, S.; Jayaraman, S.; Jung, S.; Lauterbach, C.; Weber, W.; Kirstein, T.; Cottet, D.; Grzyb, J.; Troster, G.; Jones, M.; Martin, T.; Nakad, Z. Electronic textiles: A platform for pervasive computing, Proceedings of the IEEE, 2003, 91, 1995-2018.
  • 3. Catrysse, M.; Puers, R.; Hertleer, C.; Van Langenhove, L.; van Egmond, H.; Matthys, D. Towards the integration of textile sensors in a wireless monitoring suit, Sensors and Actuators A-Physical, 2004, 114, 302-311.
  • 4. Clemens, F.; Wegmann, M.; Graule, T.; Mathewson, A.; Healy, T.; Donnelly, J.; Ullsperger, A.; Hartmann, W.; Papadas, C. Computing fbers: A novel fber for intelligent fabrics?, Advanced Engineering Materials, 2003, 5, 682-687.
  • 5. Gniotek, K.; Gołębiowski, J.; Leśnikowski, J. Temperature Measurements in a Textronic Fireman Suit and Visualisation of the Results, Fibres & Textiles in Eastern Europe, 2009, 18, 1(72), 97-101.
  • 6. Zięba J.; Frydrysiak M.; Tokarska M. Research of Textile Electrodes for Electrotheraphy. Fibres & Textiles in Eastern Europe 2011, 19, 5(88), 70-74.
  • 7. Tognetti A.; Bartalesi R.; Lorussi F.; De Rossi D. Body segment position reconstruction and posture classifcation by smart textiles. Transactions of the Institute of Measurement and Control 2007, 29, 215-253.
  • 8. Sawhney A.; Agrawal A.; Lo T. C.; Patra P.K.; Chen C.H.; Calvert P. Soft-structured sensors and connectors by inkjet printing. Aatcc Review 2007, 7, 42-46.
  • 9. Mattmann C.; Clemens F.; Tröster G. Sensor for Measuring Strain in Textile. Sensors 2008, 8, 3719-3732.
  • 10. Cochrane C.; Koncar V.; Lewandowski M.; Dufour C. Design and development of a fexible strain sensor for textile structures based on a conductive polymer composite. Sensors 2007, 7, 473-492.
  • 11. Zięba J.; Frydrysiak M. Textronics - Electrical and electronic textiles. Sensors for breathing frequency measurement. Fibres & Textiles in Eastern Europe 2006, 14, 5(59), 43-48.
  • 12. Mundt C. W.; Montgomery K. N.; Udoh U. E.; Barker V. N.; Thonier G. C.; Tellier A. M.; Ricks R. D.; Darling R. B.; Cagle Y. D.; Cabrol N. A.; Ruoss S. J.; Swain J. L.; Hines J. W.; Kovacs G. T. A. A multiparameter wearable physiologic monitoring system for space and terrestrial applications. IEEE Transactions on Information Technology in Biomedicine 2005, 9, 382-391.
  • 13. Carpi F.; De Rossi D. Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Transactions on Information Technology in Biomedicine 2005, 9, 295-318.
  • 14. Diamond D.; Coyle S.; Scarmagnani S.; Hayes J. Wireless sensor networks and chemo-biosensing. Chemical Reviews 2008, 108, 652-679.
  • 15. Wijesiriwardana R. Inductive fbermeshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sensors Journal 2006, 6, 571-579.
  • 16. Locher I.; Troster G., Screen-printed textile transmission lines, Textile Research Journal 2007, 77(11), 837-842.
  • 17. Woo K.; Kim D.; Kim J.S.; Lim S.; Moon J., Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate, Langmuir 2009, 25, 429-433.
  • 18. de Gans J. B.; Duineveld P.C.; Schuert U.S., Inkjet printing of polymers: State of the art and future developments, Advanced Materials 2004, 16(3), 203-213.
  • 19. Huang D.; Liao F.; Molesa S.; Redinger D.; Subramanian V. Plastic-compatible low resistance printable gold nanoparticle conductors for fexible electronics, Journal of Electrochemical Society 2003, 150 (7), 412-41.
  • 20. van Osch T. H. J.; Perelaer J.; de Laat A. W. M.; Schubert U. S. Inkjet printing of narrow conductive tracks on untreated polymeric substrates, Advanced Materials 2008, 20, 343-345.
  • 21. Lee, H. H.; Chou, K. S.; Huang K. Ch. Inkjet printing of nanosized silver colloids, Nanotechnology 2005, 16(10), 2436-2441.
  • 22. Mun S.; Yun S.; Jung H.; Kim J. Sintering condition effect on the characteristics of ink-jet printed silver pattern on fexible cellulose paper, Current Applied Physics (2011). doi:10.1016/j.cap. 2011.04.036.
  • 23. Park J. W.; Baek S. G., Thermal behavior of direct-printed lines of silver nanoparticles, Scripta Materialia 2006, 55, 1139-1142
  • 24. Jahn S. F.; Jakob A.; Blaudeck T.; Schmidt P.; Lang H.; Baumann R. R., Inkjet printing of conductive patterns with an aqueous solution of [AgO2C(CH2OCH2)3H] without any additional stabilizing ligands, Thin Solid Films 518, 3218-3222.
  • 25. Chiolerio A.; Maccioni G.; Martino P.; Cotto M.; Pandolf P.; Rivolo P.; Ferrero S.; Scaltrito L., Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for fexible electronics, Microelectronic Engineering 2011, 88, 2481-2483.
  • 26. Lesyuk R.; Jillek W.; Bobitski Y.; Kotlyarchuk B. Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabricaton by ink-jet method, Microelectronic Engineering 2011, 88, 318-321.
  • 27. Lee C. L.; Chang K. C.; Syu C. M., Silver nanoplates as inkjet ink particles for metallization at a low baking temperature of 100 oC, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 381, 85-91.
  • 28. Coyle S.; Lau K. T.; Moyna N.; O’Gorman D.; Diamond D.; Di Francesco F.; Costanzo D.; Salvo P.; Trivella M. G.; De Rossi D. E.; Taccini N.; Paradiso R.; Porchet J. A.; Ridolf A.; Luprano J.; Chuzel C.; Lanier T.; Cavalier F. R.; Schoumacker S.; Mourier V.; Chartier I.; Convert R.; De-Moncuit H.; Bini C.; BIOTEX—Biosensing Textiles for Personalised Healthcare Management, IEEE T. Inf. Technol. 2010, B 14, 364-370.
  • 29. Stempień Z.; Tokarska M.; Gniotek K., Laboratory Stand for the Optimisation of the UV Curing of Fluids Disposed on Textiles, Fibres & Textiles in Eastern Europe 2010, 18, 2(79), 65-69.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0021-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.