PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Physical and Chemical Properties of Different Morphological Parts of Sugar Palm Fibres

Identyfikatory
Warianty tytułu
PL
Fizyczne i chemiczne właściwości zróżnicowanych morfologicznie części włókien palmy cukrowej
Języki publikacji
EN
Abstrakty
EN
Recently, due to increased environmental concerns, scientists and technologists have placed great importance on the application of natural fibres, especially in biocomposites. The sugar palm tree is one of the most popular natural fibres used in engineering applications. A study on the fundamental properties of fibres from different morphological parts of the sugar palm plant, which are bunch, black sugar palm fibre, locally known as ijuk, trunk and frond was carried out in order to evaluate their potential as eventual raw materials for reinforced polymer composites. From this study, it wasd found that sugar palm frond (SPF) gives the highest tensile strength compared to the other parts, which is 421.4 N/mm2. The tensile strength for sugar palm bunch (SPB), ijuk and sugar palm trunk (SPT) is 365.1, 276.6 and 198.3 N/mm2, respectively. These results have been proven using those for their chemical compositions, where the highest cellulose content was obtained from SPF (66.5%), followed by SPB (61.8%), ijuk (52.3%), and SPT (40.6%). For water absorption testing, it was found that SPF also gave the highest percentage - 132.8%, followed by SPB, ijuk and SPT. Fourier transform infrared (FT-IR) spectroscopy was used in order to detect the presence of functional groups existing in sugar palm fibre.
PL
W ostatnich lata zwraca się szczególną uwagę na zastosowanie włókien naturalnych w biokompozytach. Pień palmy cukrowej wykorzystywany jest powszechnie do uzyskiwania włókien mających zastosowanie w aplikacjach inżynierskich. Przeprowadzono badanie właściwości włókien pochodzących z różnych części pnia dla określenia możliwości ich zastosowania jako surowca używanego do wzmacniania kompozytów. Określono części pnia palmy wykazujące największą wytrzymałość właściwą na zerwanie rzędu 198 do 365 N/mm2, najwyższą zawartość celulozy rzędu 40 - 66% i absorpcję wody rzędu 133%. Fourierowską spektroskopie podczerwieni (FT-IR) zastosowano w celu wykrycia obecności grup funkcyjnych występujących we włóknach palmy cukrowej.
Rocznik
Strony
21--24
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
  • Malaysia, Serdang, Institute of Advanced Technology, Laboratory of Advanced Materials and Nanotechnology
Bibliografia
  • 1. Mohanty AK, Misra M, Drzal LT, Selke SE, Harte BR, Hinrichsen G. Natural fbres, biopolymers, and biocomposites: an introduction. In Mohanty et al. (eds) Natural fbres, biopolymers, and biocomposites, CRC Press, Boca Raton, 2005, pp. 1-36.
  • 2. Sapuan SM, Maleque MA. Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials and Design 2005; 26: 65-71.
  • 3. Leman Z, Sapuan SM, Saifol AM, Maleque MA, Ahmad MMHM. Moisture absorption behavior of sugar palm fber reinforced epoxy composites. Materials and Design 2008; 29: 1666-1670.
  • 4. Siregar JP. Tensile and fexural properties of Arenga pinnata flament (Ijuk flament) reinforced epoxy composites, MS Thesis, Universiti Putra Malaysia, Malaysia, 2005.
  • 5. Mogea JP, Seibert B, Smits W. Multiprpose palm: the sugar palm (Arenga pinnata (Wurmb) Merr.), Agroforest System 1991; 13: 111-129.
  • 6. Ishak MR. Mechanical properties of treated and untreated woven sugar palm fbre-reinforced unsaturated polyester composites, MS Thesis, Universiti Putra Malaysia, Selangor, Malaysia, 2009.
  • 7. Abdul Khalil HPS, Rozman HD. Gentian dan Komposit Lignoselulosik, Universiti Sains Malaysia Publisher, Penang, Malaysia, 2004, pp. 15-40.
  • 8. Abdul Khalil HPS, Siti Alwani M, Rizuan R, Kamarudin H, Khairul A. Chemical composition, morphological characteristics, and cell wall structure of Malaysia oil palm fbres, Polymer Plastic Technology Engineering 2008; 47: 237-280.
  • 9. Anwar UMK, Paridah MT, Hamdan H, Sapuan SM, Bakar ES. Effect of curing time on physical and mechanical properties of phenolicitreated bamboo strips, Indstrial Crops Production 2009; 29: 214-219.
  • 10. Wise LE, Murphy M, D’ Addie AA. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicelluloses, Paper Trade Journal 1946; 122: 35.
  • 11. Zahner R, Whitmore FW. Early growth of radically thinned loblolly pine, Journal of Forest 1960; 58: 628-634.
  • 12. Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world, Journal Polymer Environmental 2002; 10: 19-26.
  • 13. Gu H. Tensile behaviours of the coir fbre and related composites after NaOH treatment, Material and Design 2009; 30: 3931-3934.
  • 14. Justiz-Smith NG, Virgo GJ, Buchanan VE. Potential of Jamaican banana, coconut coir and bagasse fbres as composite materials, Material Characterization 2008; 59: 1273-1278.
  • 15. Edeerozey AMM, Akil HM, Azhar AB, Ariffn MIZ. Chemical modifcation of kenaf fbres, Matterial Letter 2007; 61: 2023-2025.
  • 16. Xue Y, Du Y, Elder S, Wang K, Zhang J. Temperature and loading rate effects on tensile properties of kenaf bast fbre bundles and composites, Composite Engineering 2009; 40: 189-196.
  • 17. Jacob M, Thomas S, Varughese KT. Mechanical properties of sisal/oil palm hybrid fbre reinforced natural rubber composites, Journal of Composite Science and Technology 2004; 64: 955-965.
  • 18. Rowell RM. Property enhanced natural fbre composite material based on chemical modifcation. In Prasad et al. (eds) Science and technology of polymers and advanced materials, Plenum Press, New York, 1998, pp. 717-732.
  • 19. Ray D, Rout J. Thermoset biocomposites. In Mohanty et al. (eds) Natural fbers, biopolymers, and biocomposites, CRC Press, Boca Raton, 2005, pp. 291-345.
  • 20. Habibi Y, El-Zawawy W, Ibrahim MM, Dufresne A. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fbres from Egyptian agro-industrial residues, Journal of Composite Science and Technology 2008; 68: 1877-1885.
  • 21. Reddy N, Yang Y. Biofbres from agricultural by products for industrial applications, Trends Biotechnology 2005; 23: 22-27.
  • 22. Bachtiar D, Sapuan SM, Ahmad MHM, Sastra HY. Chemical composition of ijuk (Arenga pinnata) fbre as reinforcement for polymer matrix composites, Journal of Applied Technology 2006; 4: 1-7.
  • 23. Kazayawoko M, Balatinecz JJ, Woodhans RT. Diffuse refectance Fourier transform infrared spectra of wood fbres treated with maleated PP, J. App. Pol. Scien. 1997; 66: 1163-1173.
  • 24. Glasser WG, Kelley SS. Lignin. In Mark HF, Kroschwits JI (eds) Encyclopedia of Polymer Science and Engineering, 2nd Edition, John Wiley & Sons, Inc. New York, 1987, pp. 795-852.
  • 25. Himmelsbach DS, Khalili S, Akin DE. The use of FT-IR micro-spectroscopic mapping to study the effects of enzymatic retting of fax (Linum usitatissium L.) stem, Journal of Science and Food Agriculture 2002; 82: 685-696.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0021-0052
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.