PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of Natural Convective Heat Transfer Coefficient for Plain Knitted Fabric via CFD Modeling

Identyfikatory
Warianty tytułu
PL
Określenie współczynnika konwekcji naturalnej dla dzianin o splocie płaskim poprzez modelowanie numeryczne i stosowanie metody elementów skończonych
Języki publikacji
PL
Abstrakty
PL
Dla możliwości analizy stosowanego systemu obliczeń wykonano wstępnie pomiary współczynnika konwekcji naturalnej dla dzianin bawełnianych o splocie płaskim za pomocą układu zaprojektowanego przez autorów. Następnie zaprojektowano model dzianiny i zastosowano programy komputerowe do przeprowadzenia obliczeń. Dzięki porównaniu wyników uzyskanych z doświadczeń i obliczeń stwierdzono, że obliczenia wiernie odzwierciedlają warunki rzeczywiste. Stwierdzono jednocześnie, że opracowany model pozwala na uzyskiwanie dobrych wyników przy rożnych warunkach zewnętrznych takich jak np. temperatura otoczenia.
EN
In this study, the natural convective heat transfer coefficient for plain knitted fabric is estimated by numerical modeling, and the applicability of commercial software using the finite volume method (FVM) to textile problems was investigated. For this purpose, the convective heat transfer coefficient of plain knitted fabric made from cotton was first measured experimentally with the help of the in-house set-up developed. Then a plain weft knitted fabric model was created using CATIA, and Gambit and Fluent software was employed for numerical analyses. Finally experimental results were compared with those obtained from the numerical method. Based on the results, it was concluded that the numerical modeling simulated the related experimental study well. It was also stated that the numerical model developed has the potential to obtain the heat convection coefficient of the material considered for different conditions such as environment temperature etc.
Rocznik
Strony
42--46
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
  • Turkey, Istanbul, Istanbul Technical University, Textile Engineering Department
Bibliografia
  • 1. Layton, J. M.; Li, Y. The Science of Clothing Comfort, The Textile Institute, Oxford, 2001.
  • 2. Ukponmwan, J. O. The Thermal Insulation Properties of Fabrics, The Textile Institute, Oxford, 1993.
  • 3. Balcı, F. S. B. A Study of the Nature of Fabric Comfort: Design-oriented Fabric Comfort Model, Ph.D. Thesis, Auburn University, 2004.
  • 4. Qian, X. Prediction of Clothing Thermal Insulation and Moisture Vapour Resistance, Ph.D. Thesis, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 2005.
  • 5. Wang, Y. Heat and Moisture Transfer and Clothing Thermal Comfort, Ph.D. Thesis, Hong Kong Polytechnic University, 2002.
  • 6. Chen, Y. S.; Fan, J. Clothing Thermal Insulation During Sweating, Textil. Res. J., 2003, 73(2), 152–156.
  • 7. Hatch, K. L.; Woo, S. S.; Barker, R. L.; Ebdhakrishnaiah, P. L.; Markee, N.; Maibach, H. I. In Vivo Cutaneous and Perceived Comfort Response to Fabric. Part 1: Thermophysiological Comfort Determinations for Three Experimental Knit Fabrics, Textil. Res. J., 1990, 60(7), 405–412.
  • 8. Barker, R. L.; Rahakrıshnaiah, P.; Woo, S. S.; Hatch, K. L.; Markee, N. L; Maibach H. I. In Vivo Cutaneous and Perceived Comfort Response to Fabric. Part 2: Mechanical and Surface Related Comfort Property Determinations for Three Experimental Knit Fabrics, Textil. Res. J., 1990, 60(7), 490–494 (.
  • 9. Yoo, H. S.; Hu, Y. S.; Kim, E. A. Effects of Heat and Moisture Transport in Fabrics and Garments Determined with a Vertical Plate Sweating Skin Model, Textil. Res. J., 2000, 70(6), 542–549.
  • 10. Gibson, P. W. Factors Infuencing Steady-state Heat and Water Vapor Transfer Measurements for Clothing Materials, Textil. Res. J., 1993, 63(12), 749–764.
  • 11. Li, Y.; Qingyong, Z.; Yeung, K. W. Infuence of Thickness and Porosity on Coupled Heat and Liquid Moisture Transfer in Porous, Textiles, Textil. Res. J., 2002, 72(5), 435-446.
  • 12. Holcombe, B. V.; Hoschke, B. N. Dry Heat Transfer Characteristics of Underwear Fabrics, Textil. Res. J., 1983, 53(6), 368-373.
  • 13. Fan, J.; Cheng, X. Y. Heat and Moisture Transfer with Sorption and Phase Change Through Clothing Assemblies, Part 1: Experimental Investigation, Textil. Res. J., 72005, 2(2), 99-105.
  • 14. Fan, J.; Cheng, X. Y.; Heat and Moisture Transfer with Sorption and Phase Change Through Clothing Assemblies, Part 1: Theoretical Modeling, Simulation, and Comparison with Experimental Results, Textil. Res. J., 2005, 75(3), 187-196.
  • 15. Purvis, A. J.; Tunstall, H. Effects of Socks Type on Foot Skin Temperature and Thermal Demand During Exercise, Ergonomics, 2004, 47(15), 1687-1668.
  • 16. Hossain, M.; Acar, M.; Malalasekera, W. A Mathematical Model For Airfow and Heat Transfer Through Fibrous Webs, J. Process Mechanical Engineering Part E, 2005, 219, 357-366.
  • 17. Cui, P.; Wang, F. An Investıgatıon of Heat Flow Through Kapok Insulatıng Materıal Tekstil ve Konfeksiyon, 2009, 2, 88-92.
  • 18 Kothari, V. K.; Bhattacharjee, D. Prediction Of Thermal Resistance of Woven Fabrics. Part I: Mathematical Model, The Textile Institute, 2008, 99(5), 421–432.
  • 19. Bhattacharjee, D.; Kothari, V. K. Prediction Of Thermal Resistance of Woven Fabrics. Part II: Heat transfer in natural and forced convective environments, The Textile Institute2008, 99(5), 433–449.
  • 20. Cimilli, S.; Uygun, F.;, Candan, C.; Ozdemir, M. A Comparative Study of Some Comfort-related Properties of Socks of Different Fiber Types, Textil. Res. J., 2009.
  • 21. Duhovic, M.; Bhattacharyya, D. Simulating the Deformation Mechanics of Knitted Fabric Composites, Compos. Appl. Sci. Manuf., 2005, December.
  • 22. Cimilli, S.; Uygun, F.; Candan,C. Modeling of Heat Transfer Measurement Unit for Cotton PlainKnitted Fabric using a Finite Element Method Textil. Res. J., 2008, 78(1), 53-59.
  • 23. Hivet, G., and Boisse, P., Consistent 3D Geometrical Model of Fabric Elementary Cell Application to a Meshing Pre-proc-essor for 3D Finite Element Analysis, Finite Element Analysis, 2005, August.
  • 24. Hong, H.; Araujo, M. D.; De Fangueiro, R.; Ciobanu, O. Theoretical Analysis of Load-extension Properties of Plain Weft Knits Made from High Performance Yarns for Composite Reinforcement, Textil. Res. J., 2002, 72(11).
  • 25. Dayıoğlu, H.; Karakaş, H., Elyaf Bilgisi, Teknik Fuarcılık Yay. Tic. Ltd. Şti. İstanbul, 2007, 34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0021-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.