Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The cross-linked chitosan is synthesized by homogeneous reaction of medium molecular weight chitosan in aqueous acetic acid solution with glutaraldehyde as cross-linking agent. Using surface plasmon resonance technique, the optical properties of cross-linked chitosan thin film before and after contacting with different concentrations of copper ion in a range of 0 to 100 ppm had been obtained by fitting. The imaginary part of refractive index increased while the thickness of the film decreased as copper ion concentration increased from 0 (deionised water) to 100 ppm. The resonance angle shifted to lower value as the copper ion concentration increased. By introducing the cross-linked chitosan film, copper ion detection can be obtained for concentration as low as 0.5 ppm using surface plasmon resonance technique.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
999--1013
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
autor
autor
- Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Bibliografia
- [1] SHAUER C.L., CHEN M.S., CHATTERLEY M., EISEMANN K., WELSH E.R., PRICE R.R., SCHOEN P.E., LIGLER F.S., Color changes in chitosan and poly(allyl amine) films upon metal binding, Thin Solid Films 434(1–2), 2003, pp. 250–257.
- [2] BHUMKAR D.R., POKHARKAR V.B., Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note, AAPS PharmSciTech 7(2), 2006, article 50.
- [3] Malaysia Environmental Quality Report 2009, Department of Environment, Ministry of Natural Resources and Environment, Malaysia, 2009, pp. 73–80.
- [4] MAGEE R.J., RAHMAN, A.K.M., Determination of copper in sea water by atomic absorption spectroscopy, Talanta 12(4), 1965, pp. 409–416.
- [5] HOHNADEL D.C., SUNDERMAN F.W., NECHAY M.W., MCNEELY M.D., Atomic absorption spectrometry of nickel, copper, zinc, and lead in sweat collected from healthy subjects during sauna bathing, Clinical Chemistry 19(11), 1973, pp. 1288–1292.
- [6] MUZZARELLI R.A., ROCCHETTI R., The determination of copper in sea water by atomic absorption spectrometry with a graphite atomizer after elution from chitosan, Analytica Chimica Acta 69(1), 1974, pp. 35–42.
- [7] FREEDMAN J.H., PEISACH J., Determination of copper in biological materials by atomic absorption spectroscopy: A reevaluation of the extinction coefficients for azurin and stellacyanin, Analytical Biochemistry 141(2), 1984, pp. 301–310.
- [8] BANNON D.I., MURASHCHIK C., ZAPF C.R., FARFEL M.R., CHISOLM J.J., Graphite furnace atomic absorption spectroscopic measurement of blood lead in matrix-matched standards, Clinical Chemistry 40(9), 1994, pp. 1730–1734.
- [9] BANNON D.I., CHISOLM J.J., Anodic stripping voltammetry compared with graphite furnace atomic absorption spectrophotometry for blood lead analysis, Clinical Chemistry 47(9), 2001, pp. 1703–1704.
- [10] DRESSLER V.L., POZEBON D., CURTIUS A.J., Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration, Spectrochimica Acta Part B: Atomic Spectroscopy 53(11), 1998, pp. 1527–1539.1012 Y. WING FEN et al.
- [11] GOOSSENS J., MOENS L., DAMS R., Inductively coupled plasma mass spectrometric determination of heavy metals in soil and sludge candidate reference materials, Analytica Chimica Acta 304(3), 1995, pp. 307–315.
- [12] LEE K.H., OSHIMA M., MOTOMIZU S., Inductively coupled plasma mass spectrometric determination of heavy metals in sea-water samples after pre-treatment with a chelating resin disk by an on-line flow injection method, Analyst 127(6), 2002, pp. 769–774.
- [13] KOBAYASHI K., KATSUYA Y., ABDULAH R., KOYAMA H., Rapid and direct determination of selenium, copper, and zinc in blood plasma by flow injection-inductively coupled plasma-mass spectrometry, Biological Trace Element Research 115(1), 2007, pp. 87–93.
- [14] MANEA S., LUCA R., PRODANA M., Application of inductively coupled plasma-mass spectrometry to investigate the presence of trace metals in human tooth, European Cells and Materials 16(Supplement 5), 2008, p. 10.
- [15] CHANG B.-Y., PARK S.-M., Electrochemical impedance spectroscopy, Annual Review of Analytical Chemistry 3, 2010, pp. 207–229.
- [16] JU M.J., HAYASHI K., TOKO K., YANG D.H., LEE S.W., KUNITAKE T., A new electrochemical sensor for heavy-metal ions by the surface-polarization controlling method, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005, Digest of Technical Papers, TRANSDUCERS’05, Vol. 2, 2005, pp. 1876–1879.
- [17] GUNKEL P., FABREI B., PRADO G., BALITEAU J.Y., Ion chromatographic and voltammetric determination of heavy metals in soils. Comparison with atomic emission spectroscopy, Analusis 27(10), 1999, pp. 823–828.
- [18] GUODONG LIU, YUEHE LIN, YI TU, ZHIFENG REN, Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array, Analyst 130(7), 2005, pp. 1098–1101.
- [19] ZENG A., LIU E., TAN S.N., ZHANG S., GAO J., Stripping voltammetric analysis of heavy metals at nitrogen doped diamond-like carbon film electrodes, Electroanalysis 14(18), 2002, pp. 1294–1298.
- [20] TVAROZEK V., REHACEK V., SHTEREVA K., NOVOTNY I., BRETERNITZ V., KNEDLIK C., SPIESS L., Thin film voltammetric microsensor for heavy metal analysis, 24th International Conference on Microelectronics, Vol. 1, 2004, pp. 189–191.
- [21] KALVODA R., Polarographic determination of adsorbable molecules, Pure and Applied Chemistry 59(5), 1987, pp. 715–722.
- [22] KOÇAK S., TOKUŞOGLU Ö., AYCAN Ş., Some heavy metal and trace essential detection in canned vegetable foodstuffs by differential pulse polarography (DPP), Electronic Journal of Environmental, Agricultural and Food Chemistry 4(2), 2005, pp. 871–878.
- [23] HOMOLA J., YEE S.S., GAUGLITZ G., Surface plasmon resonance sensors: Review, Sensors and Actuators B: Chemical 54(1–2), 1999, pp. 3–15.
- [24] TAO N.J., BOUSSAAD S., HUANG W.L., ARECHABALETA R.A., D’AGNESE J., High resolution surface plasmon resonance spectroscopy, Review of Scientific Instruments 70(12), 1999, pp. 4656–4660.
- [25] YUSMAWATI W.Y.W., CHUAH H.P., MAHMOOD M.Y.W., Optical properties and sugar content determination of commercial carbonated drinks using surface plasmon resonance, American Journal of Applied Science 4(1), 2007, pp. 1–4.
- [26] ZHANG H.Q., BOUSSAAD S., TAO N.J., High-performance differential surface plasmon resonance sensor using quadrant cell photodetector, Review of Scientific Instruments 74(1), 2003, pp. 150–153.
- [27] LIEDBERG B., NYLANDER C., LUNDSTRÖM I., Surface plasmon resonance for gas detection and biosensing, Sensors and Actuators 4, 1983, pp. 299–304.
- [28] KURIHARA K., SUZUKI K., Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory, Analytical Chemistry 74(3), 2002, pp. 696–701.
- [29] HOMOLA J., Surface Plasmon Resonance Based Sensor, Springer, New York, 2006, p. 45.
- [30] WU C.M., LIN L.Y., Utilization of albumin-based sensor chips for the detection of metal content and characterization of metal–protein interaction by surface plasmon resonance, Sensors and Actuators B: Chemical 110(2), 2005, pp. 231–238
- [31] MELÉNDEZ J., CARR R., BARTHOLOMEW D., TANEJA H., YEE S., JUNG C., FURLONG C., Development of a surface plasmon resonance sensor for commercial applications, Sensors and Actuators B: Chemical 39(1–3), 1997, pp. 375–379.
- [32] SOONWOO CHAH, JONGHEOP YI, ZARE R.N., Surface plasmon resonance analysis of aqueous mercuric ions, Sensors and Actuators B: Chemical 99(2–3), 2004, pp. 216–222.
- [33] YINTANG ZHANG, MAOTIAN XU, YANJU WANG, TOLEDO F., FEIMENG ZHOU, Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer, Sensors and Actuators B: Chemical 123(2), 2007, pp. 784–792.
- [34] JUNGWOO MOON, TAEWOOK KANG, SEOGIL OH, SURIN HONG, JONGHEOP YI, In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy, Journal of Colloid and Interface Science 298(2), 2006, pp. 543–549.
- [35] FORZANI E.S., FOLEY K., WESTERHOFF P., TAO N., Detection of arsenic in groundwater using a surface plasmon resonance sensor, Sensors and Actuators B: Chemical 123(1), 2007, pp. 82–88.
- [36] MIRKHALAF F., SCHIFFRIN D.J., Metal-ion sensing by surface plasmon resonance on film electrodes, Journal of Electroanalytical Chemistry 484(2), 2000, pp. 182–188.
- [37] SUGUNAN A., THANACHAYANONT C., DUTTA J., HILBORN J.G., Heavy-metal ion sensors using chitosan-capped gold nanoparticles, Science and Technology of Advanced Materials 6(3–4),2005, pp. 335–340.
- [38] SU-MI LEE, SHIN-WON KANG, DONG-UK KIM, JIAN-ZHONG CUI, SUNG-HOON KIM, Effect of metal ions on the absorption spectra and surface plasmon resonance of an azacrown indoaniline dye,Dyes and Pigments 49(2), 2001, pp. 109–115.
- [39] CHING-MEI WU, LIH-YUAN LIN, Immobilization of methallothionein as a sensive biosensor chip for the detection of metal ions by surface plasmon resonance, Biosensors & Bioelectronics 20(4), 2004,pp. 864–871.
- [40] PEDROTTI F.L., PEDROTTI L.M., PEDROTTI L.S., Introduction to Optics, Third Edition, Pearson Education, San Fransisco, CA, 2007, pp. 476–479.
- [41] WAN NGAH W.S., ENDUD C.S., MAYANAR R., Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, Reactive and Functional Polymers 50(2), 2002,pp. 181–190.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0019-0058